期刊文献+

基于光滑l_0范数和修正牛顿法的压缩感知重建算法 被引量:34

Reconstruction Algorithm for Compressive Sensing Based on Smoothed l_0 Norm and Revised Newton Method
在线阅读 下载PDF
导出
摘要 基于光滑l0范数最小的压缩感知重建算法——SL0算法,通过引入光滑函数序列去逼近l0范数,从而将l0范数最小的问题转化为光滑函数的最优化问题.针对光滑函数的选取以及求解该函数的最优化问题,提出一种基于光滑l0范数和修正牛顿法的重建算法——NSL0算法.首先采用双曲正切函数序列来逼近l0范数,得到一个新的最优化问题;为了提高该优化问题的计算效率,推导出针对双曲正切函数的修正牛顿方向,并采用修正牛顿法进行求解.实验结果表明,在相同的测试条件下,NSL0算法无论在重建效果还是在计算时间方面都明显优于其他同类算法. The SL0 algorithm for compressive sensing(CS) reconstruction uses smoothed l0 norm and introduces a sequence of smoothed functions to approximate the l0 norm.Therefore,the NP-hard problem of minimization of the l0 norm can be transferred to a convex optimization problem for smoothed functions.In order to choose an appropriate sequence of smoothed functions and solve the optimization problem effectively,we propose a new reconstruction algorithm based on smoothed l0 norm and revised Newton method,called NSL0 algorithm.We employ the hyperbolic tangent sequence to approximate the l0 norm,yielding a new optimization problem.To improve the computational performance,we utilize the revised Newton method to solve the optimization problem by deriving the new revised Newton directions for the sequence of hyperbolic tangent functions.Experimental results show that the proposed NSL0 algorithm is superior to existing methods both in terms of the reconstruction quality and the performance.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第4期478-484,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61073079) 中央高校基本科研业务费专项基金(2011JBM216) 教育部留学回国人员科研启动基金(教外司留[2009]1341号)
关键词 压缩感知 稀疏重建 光滑l0范数 修正牛顿法 compressive sensing sparse reconstruction smoothed l0 norm revised Newton method
  • 相关文献

参考文献14

  • 1Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 2Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 3ZHAO RuiZhen,LIU XiaoYu,Ching-Chung LI,Robert J. SCLABASSI,& SUN MinGui.Wavelet denoising via sparse representation[J].Science in China(Series F),2009,52(8):1371-1377. 被引量:26
  • 4Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 5Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 6Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 7Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 8Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 9Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 10刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:71

二级参考文献12

  • 1Boufounos P,,Duarte M,Baraniuk R.Sparse signal reconstruc tion from noisy compressive measurements using cross valida tion[].Proc IEEE Statistical Signal Processing Workshop (SSP).2007
  • 2Blumensath T,Davies M E.Iterative thresholding for sparse approximations[].Journal of Fourier Analysis and Applications.2008
  • 3Lange K,Hunter D R,Yang I.Optimization transfer using surrogate objective functions[].J Comput Graph Statist.2006
  • 4Xu Y,Weaver JB,Healy DM,et al.Wavelet transform domain filters: a spatially selective noise filtration technique[].IEEE Transactions on Image Processing.1994
  • 5Dohono DL.De-noising by soft-thresholding[].IEEE Transactions on Information Theory.1995
  • 6A.Pizurica,W.Philips,I.Lemahieu,et al.A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising[].IEEE Transactions on Image Processing.2002
  • 7Mallat,S.,Zhong,S.Characterization of signals from multi-scale edges[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1992
  • 8Kelly,SE.Gibbs phenomenon for wavelets[].Applied and Computational Harmonic Analysis.1996
  • 9Cai,T.,Silverman,B.W.Incorporating information on neighboring coefficients into wavelet estimation[].Sankhya.2001
  • 10G.Y.Chen,T.D.Bui,A.Krzyzak.Image Denoising Using Neighbouring Wavelet Coefficients[].ICASSP -- -/.2004

共引文献132

同被引文献213

  • 1李帅永,毛维培,程振华,韩明秀,夏传强.基于VMD和K-SVD字典学习的供水管道泄漏振动信号压缩感知方法[J].仪器仪表学报,2020,41(3):49-60. 被引量:26
  • 2冷雪飞,刘建业,熊智.合成孔径雷达在导航系统中的应用[J].传感器技术,2004,23(10):4-7. 被引量:6
  • 3Donoho D L Compressed sensing, IEEE Transactions on Information Theory, 2005; 52(4) : 1289-1306.
  • 4Candes E, Romberg J, T T. Robust uncertainty principles: exact sig- nal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006; 52 (2) : 489-509.
  • 5Mallat S, Zhang Z. Matching pursuits with time-frequency dictiona- ries. IEEE Transactions on Signal Processing, 1993; 41 ( 12 ) : 3397-3415.
  • 6/ Tropp J, Gilbert A. Signal recovery from random measurements vi orthogonal matching pursuit. IEEE Transactions on Information Theot / ry, 2007; 53(12): 4655-4666.
  • 7Figueiredo M, Nowak R, Wright S. Gradient projection for sparse re- construction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007; 1(4) : 586-597.
  • 8Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted 11 minimization. Journal of Fourier Analysis and Application, 2008; 14 (5-6) : 877-905.
  • 9Yin W, Osher S, Goldfarb D, et al. Bregraan iterative algorithms for lI -minimization with applications to compressed sensing. SIAM Ima- ging Sciences, 2008 ; 1 ( 1 ) : 143-168.
  • 10Daubeehies I, Vore R D, Fornasier M, et al. Iteratively re-weightedleast squares minimization for sparse recovery. Communication on Pure and Applied Mathematics, 2010; 63( 1 ) : 1-38.

引证文献34

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部