期刊文献+

轴向变速黏弹性Rayleigh梁非线性参数振动稳态响应 被引量:9

Steady state response of nonlinear vibration of an axially accelerating viscoelastic Rayleigh beam
在线阅读 下载PDF
导出
摘要 研究非线性轴向运动黏弹性Rayleigh梁因速度周期变化产生的亚谐波共振。轴向运动速度在平均速度附近做简谐周期性脉动。通过取物质导数的Kelvin本构关系描述Rayleigh梁的黏弹性。运用多尺度近似解析方法,构建轴向运动Rayleigh梁的非线性偏微分方程的可解性条件,分析参数振动稳态响应的振幅与扰动速度频率关系。并运用微分求积方法直接离散非线性Rayleigh梁的控制方程,以验证近似解析方法分析。通过数值算例,分析了系统参数对稳态响应曲线的影响。 The sub-harmonic resonance of an axially accelerating nonlinear viscoelastic Rayleigh beam was investigated via an approximate analytical method and verified via the differential quadrature method. The mathematical model of transverse vibration of an infinitesimal beam was established with variation calculus. The axial speed was characterized as a simple harmonic variation about the constant mean speed. The solvable conditions of parametric vibration for sub-harmonic resonance were established via the method of multiple scales. Therefore, the steady state periodic response was presented for an accelerating viscoelastic Rayleigb beam with simple supports boundary conditions. With numerical examples the effects of the nonlinear coefficient and the viscoelastic coefficient on the steady state response were studied individually. The differential governing equation for transverse vibration of an axially moving slender Rayleigh beam was numerically solved via the differential quadrature method. The numerical calculations confirmed the analytical results. Numerical examples demonstrated that the approximate analytical results have rather high precision.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第5期135-138,共4页 Journal of Vibration and Shock
基金 国家杰出青年科学基金(10725209) 国家自然科学基金项目(10902064) 上海市教育委员会科研创新项目(12YZ028) 上海市重点学科建设项目(S30106) 上海市青年科技启明星计划(11QA1402300)资助
关键词 Rayleigh梁 非线性 黏弹性 稳态响应 多尺度方法 Rayleigh beam parametric resonance nonlinear multi-scale method differential quadrature method
  • 相关文献

参考文献6

二级参考文献37

共引文献105

同被引文献56

  • 1黄迪山,程耀东,童忠钫.参数振动的调制反馈分析[J].浙江大学学报(工学版),1992,34(S1):22-30. 被引量:3
  • 2黄迪山.复杂参数振动的调制反馈分析[J].应用力学学报,1995,12(2):72-78. 被引量:2
  • 3许明田,程德林.用积分方程法解板的振动问题[J].应用数学和力学,1996,17(7):655-660. 被引量:7
  • 4李晓军,陈立群.轴向运动简支—固支梁的横向振动和稳定性[J].机械强度,2006,28(5):654-657. 被引量:20
  • 5杨天智,方勃,杨晓东,王日新,王立国.复杂约束管道固有频率的快速算法[J].哈尔滨工业大学学报,2007,39(5):771-773. 被引量:2
  • 6Yakubovitch V A, Starzhinskii V M. Linear Differential Equation With Periodic Coefficients [M]. Vols I and II. New York: Wiley, 1975.
  • 7Gaonkar G H, Simha Prasad D S, Sastry S. On computing Floquet transition matrices of ro- torcraft[J]. Journal of the American Helicopter Society, 1981, 26(3) : 56-61.
  • 8Sinha S C, WU Der-ho, Juneja V, Joseph P. Analysis of dynamic systems with periodically varying parameters via Chebyshev polynomials [J]. Transaction of the ASME, Journal of Vi- bration and Acoustics, 1993,115( 1 ) : 96-102.
  • 9David J W, Mithchell L D. Using transfer matrices for parametriC system forced response [ J ]. Transaction of the ASME, Journal of Vibration, Acoustics, Stress and Reliability in De- sign, 1987, 109(4): 355-350.
  • 10Wu W T, Wickert J A, Griffin J H. Modal analysis of the steady state response of a driven pe- riodic linear system[ J]. Journal of Sound and Vibration, 1995, 183(2) :297-308.

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部