摘要
在考虑支承滚动轴承内部间隙、轴承非线性Hertz接触刚度及转子不平衡量的基础上,建立了水下涡轮机刚性水平转子系统的动力学模型;采用变步长的Rouge-Kutta-Felhberg方法对系统动力学模型进行了数值仿真,基于混沌与分岔理论分析了系统的非线性振动;研究表明,转速较低时,系统的响应以VC周期振动为主;提高转速,系统在旋转频率、VC频率的组合激励下,表现出拟周期振动;继续提高转速时,系统经历阵发性分岔进入混沌状态;研究结论对水下涡轮机系统设计具有重要意义。
For the unbalanced bearing--rotor system, considering the nonlinear Hertzian contact force and the radial internal clearance of bearing, an nonlinear dynamic model is established. Using Rouge--Kutta--Felhberg of variational step, the nonlinear oscillation is simulated based on bifurcation and chaos theory. Analysis results indicate that: VC periodic oscillation is principal with low rotate speed; Enlargement rotate speed, quasi--period oscillation is showed under the effection of rotate frequency and VC frequency; With high rotate speed, the system would pass through fitful bifurcation to chaos. The analytic results provide the theoretical reference for designing the underwater turbine engine.
出处
《计算机测量与控制》
CSCD
北大核心
2012年第3期747-750,共4页
Computer Measurement &Control
关键词
非线性振动
混沌与分岔
水下涡轮机
轴承-转子系统
nonlinear oscillation
bifurcation and chaos
underwater turbine
bearing-- rotor system