期刊文献+

基于激光雷达的移动机器人动态障碍跟踪 被引量:1

Detection and Tracking of Moving Object with a Mobile Robot Using Laser Scanner
在线阅读 下载PDF
导出
摘要 动态环境下运动物体跟踪是移动机器人研究的难点之一;文章提出了一种基于激光雷达的自主动态障碍检测与跟踪方法;该方法首先利用最近邻聚类法将环境数据聚类为不同的障碍物;然后利用最近邻特征匹配算法关联相邻两帧的障碍物;最后提出一种新的基于障碍物时空关联性分析的的障碍物动静态识别算法,并采用α-β滤波算法对动态障碍的位置和速度进行了估计;利用机器人平台对该方法进行验证,实验结果表明了其有效性。 Detection and tracking of moving object is a difficult problem in mobile robot research. An autonomous approach for detection and tracking of moving obstacles is presented using 2D laser scanner. It based on the character--matching of obstacles clustered from environment data. The types of obstacles are determined with the analysis of spatiotemporal association, and implements the estimate of moving object using the α-β algorithm finally. The experiment shows that the method can accomplish the task effectively.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第3期816-819,共4页 Computer Measurement &Control
关键词 聚类 障碍物关联 时空关联性分析 动态障碍物跟踪 clustering obstacle registration the analysis of spatiotemporal association tracking of moving object
  • 相关文献

参考文献4

二级参考文献20

  • 1蔡自兴,邹小兵,王璐,段琢华,于金霞.移动机器人分布式控制系统的设计[J].中南大学学报(自然科学版),2005,36(5):727-732. 被引量:11
  • 2于金霞,蔡自兴,邹小兵,段琢华.移动机器人导航中激光雷达测距性能研究[J].传感技术学报,2006,19(2):356-360. 被引量:13
  • 3MURPHY R R.人工智能机器人学导论[M].北京:电子工业出版社,2004..
  • 4[1]Thrun S.Robotic Mapping:A Survey[R].Pittsburgh:Technical Report CMU-CS-02-111,Carnegie Mellon University,2002.
  • 5[2]Biswas R,Limketkai B,Sanner S,et al.Towards Object Mapping in Non-Stationary Environments with Mobile Robots[C]//Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems.Lausanne,Switzerland,2002:1014-1019.
  • 6[3]Wang C-C,Thorpe C,Thrun S.Online Simultaneous Localization and Mapping with Detection and Tracking of Moving Objects:Theory and Results from a Ground Vehicle in Crowded Urban Areas[C]//Proceedings of the 2003 IEEE International Conference on Robotics and Automation.Taipei,Taiwan,2003:842-849.
  • 7[4]Schulz D,Burgard W,Fox D,et al.People Tracking with Mobile Robots Using Sample-based Joint Probabilistic Data Association Filters[J].Internationai Journal of Robotics Research,2003,22(2):99-116.
  • 8[6]Kalman R E.A New Approach to Linear Filtering and Prediction Problems[J].Transactions of the American Society of Mechanical Engineers,1960,83(1):35-45.
  • 9[7]Gordon N J,Salmond D J,Smith A F M.Novel Approach to Nonlinear/non-Gaussian Bayesian State Estimation[J].IEE Proceedings on Radar and Signal Processing,1993,140 (2):107-113.
  • 10[8]SICK AG Corp.Technical Description:LMS200/ LMS211/LMS220/LMS221/LMS291 Laser Measurement Systems[EB/OL]http.www.sick.com.

共引文献16

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部