期刊文献+

区间粒子算法与线源反问题求解

A Range Particle Algorithm and the Solving of the Inverse Problem of the Line Source
在线阅读 下载PDF
导出
摘要 目前国内外对线源反问题数值求解尚没有一种成熟有效的算法。本文在研究区间搜索算法基础上,提出了一种新的求解算法—区间粒子算法(Range Particle Algorithm)来求解线源反问题。首先简要介绍了线源反问题的求解特点,并根据线源方程建立了反问题求解的目标函数;其次基于该目标函数,设计了区间粒子算法来求解,探讨了算法实现的基本步骤和参数调整问题;最后通过模拟数据和实测数据分别检验了该算法求解的效果,结果表明区间粒子算法求解精度高、收敛速度快和计算稳定,在线源反问题数值求解中是适用的。 Currently the numerical solution of the inverse problem of the line source does not have a mature and effective algorithm. Based on the study of the range search algorithm, a new algorithm is discussed for the numerically solving the inverse problem of the line source-range particle algorithm (Range Particle algorithm). First a brief introduction to the characteristics of solving the inverse problem of the line source is given, and a mathematical model of the inverse problem solution is established based on the line source equation. Secondly, based on the mathematical model, a range particle algorithm is designed to solve the problem, and the basic implementation steps and parameter adjustment of the algorithm are also discussed. Finally, the simulated and measured data are used to test the effect of the algorithm. The results show that the range particle algorithm has high precision, fast convergence and computational stability to the inverse problem of the line source, and it is applicable.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第3期86-90,共5页 Computer Engineering & Science
基金 国家863计划资助项目(2008AA09Z303)
关键词 区间粒子算法(RPA) 群体搜索 参数训练 线源反问题 数值反演 range particle algorithm(RPA) group searching parameter adjustment inverse problem of line source numerical inversion
  • 相关文献

参考文献7

二级参考文献30

  • 1陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805. 被引量:140
  • 2段玉波,任伟建,霍凤财,董宏丽.一种新的免疫遗传算法及其应用[J].控制与决策,2005,20(10):1185-1188. 被引量:36
  • 3张火明,陆慧娟,卫伟.混合离散变量模拟退火方法及其应用[J].中国计量学院学报,2006,17(1):44-49. 被引量:16
  • 4高强,吕文芝,杜小山,孟庆丰,范虹,何正嘉.遗传算法优化性能评价准则研究[J].西安交通大学学报,2006,40(7):803-806. 被引量:15
  • 5朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 6GOLDBERG D E. Genetic algorithms in search optimization and machine learning [ M]. Upper Saddle River: Addison-Wesley, 1989.
  • 7ZHAO X, YAO Y, YAN L P. Learning algorithm for multimodal optimization[ J]. Computers and Mathematics with Applications, 2009, 57(11/12) : 2016 - 2021.
  • 8SUGANTHAN P N, HANSEN N, LIANG J J. Problem definitions: An evaluation eriteria for the congress on evolutionary computation (CEC) 2005 Special Session on real-parameter optimization [R]. Singapore: Nanyang Technological University, 2005.
  • 9LEE J, SONG S. Multimodal function optimization based on the survival of the fitness kind of the evolution strategy [ C ]// Proceedings of the IEEE International Conference on Neutral Networks. Lyon: IEEE, 2007:3164-3167.
  • 10de CASTRO L N, TIMMIS J. An artificial immune network for multimodal function optimization [C]// Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. New York: ACM, 2002:699 -704.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部