期刊文献+

一类非自治二阶Hamilton系统周期解的存在性 被引量:4

Periodic Solution of a Class of Nonautomous Second Order Hamilton Systems
在线阅读 下载PDF
导出
摘要 利用鞍点定理讨论了一类非自治二阶Hamilton系统:(t)+Au(t)+ΔF(t,u(t))=0,a.e.t∈(0,2π),u(0)-u(2π)=.u(0)-u.(2π)=0周期解的存在性,其中A是N×N实对称矩阵,A具有形如k2的特征值,非线性项ΔF(t,u(t))是线性增长的. By saddle point theorem,the existence of periodic solution for a class of nonautomons second order system as follows:(t)+Au(t)+ΔF(t,u(t))=0,a.e.t∈(0,2π),u(0)-u(2π)=(0)-(2π)=0is studied.The symmetric matric A has eigenvalue k2,ΔF(t,u(t)) satisfies linear condition.
作者 张申贵
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期115-120,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11161041)
关键词 非自治二阶系统 周期解 线性增长条件 临界点 nonautomous second order system;periodic solution;linear condition;critical point
  • 相关文献

参考文献5

  • 1TANG Chunlei.Periodic Solutions for Second Order Systems with Sublinear Nonlinearity[J].Proc Amer Math Soc,1998(126):3263-3270.
  • 2韩志清.共振条件下的常微分方程组2π-周期解的存在性[J].数学学报(中文版),2000,43(4):639-644. 被引量:10
  • 3MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-verlag,1989.
  • 4AN Shiquan,AN Yukun.Periodic Solution of a Class of Second Order Systems at Resonance[J].四川大学学报:自然科学版,2002(3):493-496.
  • 5ZHAO Fukun.Existence of Periodic Solutions for Nonautonmous Second Order Systems with Linear Nonlinearity[J].NonlinearAnal,2005,60(7):325-335.

二级参考文献4

  • 1Tang Chunlei,Acta Math Sin,1998年,14卷,4期,433页
  • 2Tang Chunlei,Proc Am Math Soc,1998年,126卷,11期,3263页
  • 3Bartsch T,Nonliear Anal TMA,1997年,28卷,3期,419页
  • 4Han Z Q,2π-periodic Solutions to n-Duffing Systems, Nonlinear Analysis and Its Applicat,1994年,182页

共引文献9

同被引文献39

  • 1孟海霞,郭晓峰.一类共振二阶系统的多重周期解[J].华东师范大学学报(自然科学版),2006(1):40-44. 被引量:1
  • 2Berger M S, Schechter M. On the solvability of semilinear gradient operator equations [ J ]. Adv Math, 1977,25 (2) : 97-132.
  • 3Mawhin J, Willem M. Critical point theory and Hamihonian systems [ M ]. Berlin, New York : Springer-Verlag, 1989.
  • 4Tang Chunlei. Periodic solutions for nonautonomous second order systems with sublinear nonlinearity [ J ]. Proc Amer Math Soc, 1998,126 ( 11 ) :3263-3270.
  • 5Wu Xingping, Tang Chunlei. Periodic solutions of a class of non-autonomous second-order systems [ J ]. J Math Anal Appl, 1999,236 (2) : 227 -235.
  • 6Ma Jian,Tang Chunlei. Periodic solutions for some nonau- tonomous second-order systems [ J ]. J Math Anal Appl, 2002,275 ( 2 ) :482-494.
  • 7Tang Chunlei. Periodic solutions of non-autonomous sec- ond-order systems with y-quasisubadditive potential [ J ]. J Math Anal Appl, 1995,189 (3) :671-675.
  • 8Tang Chunlei. Periodic solutions of non-autonomous second order systems [ J ]. J Math Anal Appl, 1996,202 (2) :465- 469.
  • 9Tang Chunlei, Wu Xingping. Periodic solutions for second order systems with not uniformly coercive potential [ J ]. J Math Anal Appl,2001,259(2) :386-397.
  • 10Mawhin J. Semi-coercive monotone variational problems [J]. Acad Roy Belg Bull C1 Sei,1987,73(5) :118-130.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部