期刊文献+

头部空腔对固体火箭发动机压强振荡抑制作用的数值研究 被引量:2

Numerical analysis on effect of head cavity on resonance damping characteristics in solid rocket motors
在线阅读 下载PDF
导出
摘要 为了揭示头部空腔对固体火箭发动机压强振荡的抑制原理,以VKI实验发动机为基础,使用大涡模拟方法,对障碍物旋涡脱落诱发的振荡流场开展了数值研究,获得了压强振荡的频率和幅值,并和实验数据进行了对比。通过在发动机头部加入空腔,发现压强振幅明显减弱,证实了瑞利准则用于指导头部装药抑振设计的有效性。研究结果表明,空腔体积、位置、形状对振幅的影响很大,改变装药结构本质上是质量抽取与注入之间的相互抗争过程。装药头端复杂流场对抑振基本无效,在声压波节处改变药型对抑振基本无效,在声压波腹处加入的质量通量越大,振幅增加越显著,空腔越靠近声压波腹,空腔对声能的阻尼效应越强。 In order to reveal the effect of head-end cavity on resonance damping characteristics in solid rocket motors,large-eddy simulations were carried out to study the oscillation flowfield induced by obstacle vortex shedding on the foundation of VKI experimental motor. Pressure oscillation frequencies and amplitudes were obtained, and compared with the experimental data. It is investigated that oscillation amplitudes reduce remarkably after adding a cavity at the head-end. It is proved that Rayleigh criterion is effective for design of resonance damping. The results indicate that cavity volume, location and configuration have great effect on the oscillation amplitude. The substance of altering grain configuration is a comprehensive process of adding and extracting mass. The damping effect is not caused by the complicated flowfield at the head-end. Also,it is neglected if altering grain configuration at the pressure node. It is concluded that large mass flux added at pressure antinode could result in significant amplitude ; meanwhile, the damping effect of cavity is stronger if the cavity is nearer to pressure antinode.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2012年第1期34-41,共8页 Journal of Solid Rocket Technology
基金 国家自然科学基金(51076015)
关键词 固体火箭发动机 涡/声耦合 振荡特性 空腔 瑞利准则 solid rocket motor vortex acoustic coupling oscillation characteristics cavity Rayleigh criterion
  • 相关文献

参考文献7

二级参考文献114

共引文献55

同被引文献31

  • 1孙维申.固体火箭发动机不稳定燃烧[M].北京:北京工业学院出版社,1987.
  • 2Blomshield F S. Lessons learned in solid rocket combustion instability[R]. AIAA 2007-5803.
  • 3Fabignon Y, Dupays J. Instability and pressure oscillations in solid rocket motors[J]. Aerospace Science and Technology, 2003, 7(3): 191-200.
  • 4Gallier S, Godfroy F. Aluminum combustion driven instabilities in solid rocket motors[J]. Journal of Propulsion and Power, 2009, 25(2): 509-521.
  • 5Sabnis J S. Numerical simulation of distributed combustion in solid rocket motors with metalized propellant[J]. Journal of Propulsion and Power, 2003, 19(1): 48-55.
  • 6Golafshani M, Farshchi M, Ghassemi H. Effects of grain geometry on pulse-triggered combustion instability in rocket motors[J]. Journal of Propulsion and Power, 2002, 18(1): 123-130.
  • 7Javed A, Chakraborty D. Damping coefficient prediction of solid rocket motor nozzle using computational fluid dynamics[J]. Journal of Propulsion and Power, 2014, 30(1): 19-23.
  • 8Blomshield F S. Summary of multi-disciplinary university research initiative in solid propellant combustion instability[R]. AIAA 2000-3172.
  • 9Prevost M, Godon J C, Innegraeve O. Thrust oscillations in reduced scale solid rocket motors, part I: experimental investigations[R]. AIAA 2005-4003.
  • 10Blomshield F S. Pressure-coupled response of solid propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2011, 10(2): 85-105.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部