期刊文献+

桁架优化的改进粒子群算法 被引量:4

A CLPSO Algorithm for Truss Structure Optimization
在线阅读 下载PDF
导出
摘要 为了解决带有应力约束和位移约束的桁架的尺寸优化问题,将一种新型智能优化算法--基于"综合学习策略"的粒子群算法(comprehensive learning particle swarm optimization,CLPSO)应用于桁架结构的优化问题中.首先介绍了CLPSO算法的基本原理,给出了基于CLPSO算法的桁架结构优化设计的数学模型,并对经典桁架结构进行优化,将所得结果与其他优化算法结果进行了比较.分析结果表明了该方法进行结构优化设计的有效性. In order to solve the problem of size optimization of truss structures with stress and displace- ment constraints, a novel intelligent optimization method, comprehensive learning particle swarm optimization ( CLPSO), was introduced in this paper. The basic principle of CLPSO algorithm was presented in detail first, and then mathematical model for size optimization of truss structures is presented. Several classical problems were solved for size optimization. The results were compared with those using other optimization methods. The effec- tiveness of the proposed method was evaluated through numerical analysis.
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第1期1-5,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金资助项目(50708076)
关键词 CLPSO算法 结构优化 桁架结构 尺寸优化 惩罚函数法 CLPSO algorithm structure optimization truss structures size optimization penalty func-tion method
  • 相关文献

参考文献5

二级参考文献50

  • 1张伟,唐和生,薛松涛,李凯.基于粒子群优化的结构系统识别[J].燕山大学学报,2009,33(2):153-158. 被引量:4
  • 2隋允康,高峰,龙连春,杜家政.基于层次分解方法的桁架结构形状优化[J].计算力学学报,2006,23(1):46-51. 被引量:18
  • 3于瀛,侯朝桢.一种用于函数优化的免疫算法[J].计算机工程,2006,32(10):167-168. 被引量:2
  • 4ROZVANY GIN, BENDSOE MP, KIRSH U. Layout optimization pitfalls in topology optimization[J]. Appl. Mech. 1995, 48(2): 41-117.
  • 5WANG D, ZHANG W H, JIANG J S. Truss shape optimization with multiple displacement constraints[J]. Computer methods in applied mechanics and engineering, 2002, 191:3597-3612.
  • 6TANG WEN-YAN, TONG LI-YONG, GU YUAN- XIAN. Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables [J]. Int. J Numer. Meth. Engng 2005,62:1737-1762.
  • 7CHEE KIONG SOH, YANG YAO-WEN. Genetic programming-based approach for structural optimization. Journal of Computing in Civil Engineering. 2000, 14(1): 31-37.
  • 8STORN R, PRICE K. Differential evolution A simple and efficient adaptive scheme for global optimization over continuous spaces [ J]. Journal of Global Optimization, 1997,11 (4) : 341-359.
  • 9VESTERSTROM J, THOMSEN R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems [J]. Evolutionary Computation, 2004, 2:1980-1987.
  • 10GONG WEN-YIN, CAI ZHI HUA, ZHU LI. An efficient multi-objective differential evolution algorithm for engineering design [ J ]. Structural and Multidisciplinary Optimization, 2009,4 (2) : 137-157.

共引文献33

同被引文献39

  • 1隋允康,高峰,龙连春,杜家政.基于层次分解方法的桁架结构形状优化[J].计算力学学报,2006,23(1):46-51. 被引量:18
  • 2王连广,侯献语,冯刚.基于遗传算法的预应力钢桁架优化设计[J].沈阳建筑大学学报(自然科学版),2006,22(4):567-570. 被引量:2
  • 3刘齐茂,燕柳斌,邓朗妮.桁架形状优化的一种改进模拟退火算法研究[J].计算机工程与应用,2007,43(23):218-221. 被引量:8
  • 4孙靖民.机械优化设计[M].北京:机械工业出版社,2006.
  • 5Hoffman F, Hammunds J. Propagation of uncer- tainty in risk assessments:the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability [ J ]. Risk Anal- ysis, 1994,14(5 ) :707 -712.
  • 6Qiu z P, Chen S H, Elishakoff I. Natural fre- quences of structures with uncertain but nonran- dom parameters [ J ]. J Optimization Theory and Applications, 1995, 86:669 - 683.
  • 7Yang X W, Chen S H, Lian H D. Bounds of complex eigenvalues of structures with interval parameters [ J ]. Engineering Mechanics, 2001, 23:557 - 563.
  • 8Chen S H, Yang X W. Interval finite element method for beam structures [ J ]. Finite ELementsin Analysis and Design, 2000, 34:75 - 88.
  • 9Chen S H, Lian H D. Dynamic for structures with interval parameters [ J ]. Structural Engineering and Mechanics, 2002, 13(3) :299-312.
  • 10Rao S S, Berke L. Analysis of uncertain structural system using interval analysis [ J ]. AIAA Jour- nal, 1997,35:727 - 735.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部