期刊文献+

EMD和遗传神经网络算法研究—以装载机动态称重系统为例 被引量:2

EMD method and genetic neural network algorithm and its application to dynamic weighing system for loader
在线阅读 下载PDF
导出
摘要 装载机压力传感器的输出信号是包含强振动、噪声的非线性信号,而装载机动态称重系统的测量精度与压力传感器的信号之间有极其密切的关系,采用经验模态分解对压力传感器的信号进行预处理,提取其有用称重信号,采用BP神经网络算法对称重信号与重物重量之间的非线性关系进行拟合,同时使用遗传算法加快收敛速度,得到适合的非线性测重数学模型,仿真和实验参数计算表明,该处理方法在装载机动态称重系统中的应用是有效的。 The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration,noise,nonlinear signal.The accuracy of the dynamic weighing system is closely related to the pressure signal.An Empirical Mode Decomposition(EMD)algorithm is proposed to preprocess the signal contaminated.The real weighing signal is filtered out.BP neural network is used to fit the nonlinear relationship between the weighing signal and the weights of the goods.The genetic algorithm is put forward to speed up the convergence.The suitable mathematical model of nonlinear measure weight is obtained.The emulation analysis and the results show that by using the above method,measure precision is efficacious.
出处 《计算机工程与应用》 CSCD 2012年第11期229-232,共4页 Computer Engineering and Applications
基金 浙江省自然科学基金(No.Y1100237)
关键词 装载机 动态称重系统 经验模态分解 遗传神经网络 loader dynamic weighing system Empirical Mode Decomposition(EMD) genetic neural network
  • 相关文献

参考文献9

二级参考文献62

共引文献57

同被引文献16

  • 1王松柏,魏洪兴,王伟.装载机动态称重系统的硬件设计与实验研究[J].制造业自动化,2007,29(1):29-32. 被引量:4
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[l]. Proceedings of the Royal Society, 1998,454 (A) : 903-995.
  • 3Huang N E, Shen Z, Steven R L. A new view of nonlinear water waves: the Hi]bert spectrum [J]. Ann Rev Fluid Mech, 1999, 31 (1) : 417-457.
  • 4Wu Zhaohua, Huang N E. A study of the character-istics of white noise using the empirical mode decom-position method El]. The Royal Society, 2004, 460:1597-1611.
  • 5Norden E H, Wu Manli, Qu Wendong. Applications of hi]bert-huang transform to non-stationary financial time series analysis [J]. Applied Stochastic Models in Business and Industry, 2003, 19: 245-268.
  • 6Zhang Xun, Lai K K, Wang Shouyang. A new approach for crude oil price analysis based on empirical mode decomposition [l]. Energy Economics, 2008,30." 905-918.
  • 7黄海南,钟伟.GARCH类模型波动率预测评价.中国管理学,2007,15(6):13-19.
  • 8刘姝伶,温涛,葛军.人民币汇率预测及方法选择--基于ARIMA与GARCH模型[J].技术经济与管理研究,2008(4):91-93. 被引量:22
  • 9王怡文,陈奕播.基于Copula和EMD的国内燃料油期货价格影响因素研究[J].管理学家(学术版),2009(5):30-36. 被引量:2
  • 10郑振龙,黄薏舟.波动率预测:GARCH模型与隐含波动率[J].数量经济技术经济研究,2010,27(1):140-150. 被引量:72

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部