期刊文献+

应用扩展F-展开法求解非线性薛定鄂方程 被引量:1

The extended F-expansion method to solve the nonlinear Schrdinger equations
在线阅读 下载PDF
导出
摘要 考虑非线性薛定鄂方程的行波解,对方程进行行波变化,把求解偏微分方程转化为求解常微分方程.通过应用扩展F-展开法,获得了非线性薛定鄂方程的精确行波解. We study the travelling wave solutions for the nonlinear Schrodinger equations.We first change the equations to an identical differential equations by using the traveling wave transform.Then by the extended F-expansion method,we obtained some exact travelling wave solutions of the Schrodinger equations.
作者 何晓莹
出处 《广西工学院学报》 CAS 2012年第1期82-85,91,共5页 Journal of Guangxi University of Technology
基金 广西工学院自然科学基金项目(院科自0977104) 广西自然科学基金项目(2011GXNSFAO18137) 广西区教育厅科研立项项目(201010LX250)资助
关键词 非线性薛定鄂方程 扩展F-展开法 精确行波解 nonlinear Schrodinger equations extended F-expansion method exact travelling wave solutions
  • 相关文献

参考文献2

二级参考文献17

  • 1Wang M-L. The solitary wave solutions for variant Eoussinesq equations[J]. Phys. Lett. A, 1995,199(3):167-172.
  • 2He J-H, Wu X-H. Exp- function method for nonlinear wave equations[ J ]. Chaos Solitons Fraet, 2006, 30 (3) : 700-708.
  • 3Fan E G. Extended tanh-functlon method and its application to nonlinear equations[J]. Phys. Lett. A,2000,277(4) :212-218.
  • 4Wang M- L, Zhang J-L, Li X- Z. The ((G')/(G) )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett A,2008,372(4):417-423.
  • 5Zhang J-L, Wang M-L, Li X-Z. The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrodinger equation[J], phys. lett. A, 2006, 357(3) :188-195.
  • 6Zhu S-D. Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrodinger equation by the extended hyperbolic auxiliary equation method[J]. Chaos Soliton. Fract, 2007,34(5) : 1608-1612.
  • 7谷超豪.孤子理论和它的应用[M].杭州:浙江科技出版社,1990.
  • 8Wang Mingliang.The solitary Wave solutions for variant Boussinesq equations[J].Phys.Leff.A,1995.(199):167-172.
  • 9DAI Z D,et al,Homoclinic tubes for the Davey-Atewartson Ⅱ equaton with periodic boundary conditions[J].Chin.J.Phys.2005,43 (2):349-356.
  • 10Fan Engui.Extended tanh-function method and its application to nonlinear equations[J].Phys.Lett.A,2000,(277):212-218.

共引文献11

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部