期刊文献+

结合KICA的软测量建模方法及其在间歇过程的应用

Soft Sensor Modeling Approach with KICA and its Application in Batch Process
在线阅读 下载PDF
导出
摘要 针对间歇过程的建模问题,提出一种结合核独立成分分析(KICA)和稀疏核学习的软测量建模方法。首先将KICA应用于建模样本集,在高维空间提取输入变量的信息,以降低过程变量的相关性,再用稀疏核学习建立软测量模型。以估计链激酶流加发酵过程的活性菌体质量分数和链激酶质量分数为例,将基于KICA信息提取的稀疏核学习方法用于间歇过程的软测量建模。仿真结果表明,KICA信息提取能力优于传统ICA或核主元分析等其他方法,所提出的建模方法预报精度更高。 A comprehensive soft sensor modeling method using kernel independent component analysis (KICA) and sparse kernel learning (SKL) is proposed for batch process. The KICA is firstry adopted for acquiring information of input variables in the high dimensional feature space to reduce the correlation or process variables, and the model is established by using SKL. The KICA-SKL modeling method is applied to estimate the active biomass and streptokinase concentrations in a fed-batch streptokinase fermentation process. Compared to traditional ICA or kernel principal component analysis based on information extraction methods, the simulation result shows that the KICA has better information acquisition performance and the proposed modeling method can predict much more accurately.
出处 《石油化工自动化》 CAS 2012年第2期36-40,共5页 Automation in Petro-chemical Industry
基金 国家自然科学基金资助项目(61004136) 浙江省自然科学基金资助项目(Y4100457)
关键词 间歇过程 软测量建模 核独立成分分析 支持向量回归 稀疏核学习 batch process soft sensor modeling KICA support vector regression SKL
  • 相关文献

参考文献14

  • 1KADLEC P,GABRYS B,STRANDT S. Data driven Soft Sensors in the Process Industry[J].Computers and Chemical Engineering,2009,(33):795-814.
  • 2金福江,周丽春.化工软测量技术研究进展[J].化工进展,2005,24(12):1379-1382. 被引量:14
  • 3BISHOP C M. Pattern Recognition and Machine Learning[M].New York:springer-verlag,2006.
  • 4DESAI K,BADHE Y,TAMBE S S. Soft-sensor Development for Fedbatch Bioreactors Using Support Vector Regression[J].Biochemical Engineering Journal,2006,(03):225-239.
  • 5LIU Yi,GAO Yanchen,GAO Zengliang. Simple Nonlinear Predictive Control Strategy for Chemical Processes Using Sparse Kernel Learning with Polynomial Form[J].Industrial and Engineering Chemistry Research,2010,(17):8209-8218.
  • 6LIU Yi,WANG Haiqing,YU Jiang. Selective Recursive Kernel Learning for Online Identification of Nonlinear Systems with NARX Form[J].Journal of Process Control,2010,(02):181-194.
  • 7CAO Lijia,CHUA K S,CHONG W K. A Comparison of PCA,KPCA and ICA for Dimensionality Reduction in Support Vector Machine[J].Neurocomputing,2003,(01):321-336.
  • 8李哲,田学民.基于辅助变量KNN分析的软测量建模方法[J].化工学报,2008,59(4):941-946. 被引量:5
  • 9BACH F R,JORDAN M I. Kernel Independent Component Analysis[J].Journal of Machine Learning Research,2002,(03):1-48.
  • 10LEE J M,QIN S J,LEE I B. Fault Detection of Non-linear Processes Using Kernel Independent Component Analysis[J].Canadian Journal of Chemical Engineering,2007,(08):526-536.

二级参考文献41

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部