期刊文献+

云计算环境下能量感知的任务调度算法 被引量:8

Energy-aware Task Scheduling Algorithms in Cloud Computing
在线阅读 下载PDF
导出
摘要 云计算环境下传统独立任务调度算法容易导致较高资源能耗或较大任务时间跨度.针对该问题,文中提出了两种能量感知的任务调度算法,并利用遗传算法并行化搜索合理调度方案.两种算法在搜索过程中,分别通过能耗时间归一和能耗时间双适应度方法定义适应度函数并进行个体选择.仿真结果表明,与单独考虑时间或能耗相比,这两种算法能够更有效地缩短任务执行时间跨度,降低资源能耗. Traditional independent task scheduling algorithms in cloud computing may results in higher energy consumption of resources or longer makespan of tasks. This paper proposes two energy-aware task scheduling algorithms of cloud computing to consider makespan and the total energy consumption- They adopt the genetic algorithm to parallel find the reasonable scheduling scheme. These two algorithms use the methods of unify and double fitness to define the fitness function and select individuals. Compared with the algorithm considering only about time or energy consumption, the simulation results demonstrate the two algorithms can complete the tasks and reduce the energy consumption efficiently.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第5期188-192,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60863003 61063042) 新疆大学博士科研启动基金(BS090153)
关键词 云计算 任务调度 遗传算法 能量感知 时间跨度 cloud computing task scheduling genetic algorithm energy-awareness makespan
  • 相关文献

参考文献10

  • 1过敏意.绿色计算:内涵及趋势[J].计算机工程,2010,36(10):1-7. 被引量:36
  • 2Bui V, Norris B, Huck K, et al. A component infra- structure for performance and power modeling of par- allel scientific applications[C]//Proc of CBHPC' 08. Karlsruhe, Germany:[s. n. ], 2008.
  • 3Khan S, Ahmad I. A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(3) :346-360.
  • 4Guzek M, Pecero J, Dorrosoro B, et al. A cellular ge- netic algorithm for scheduling applications and energy- aware communication optimization [C]// International Conference on High Performance Computing and Sim- ulation (HPCS). France: IEEE, 2010: 241-248.
  • 5陈晶,潘全科.求解独立任务调度问题的改进粒子群算法[J].微电子学与计算机,2009,26(1):151-154. 被引量:5
  • 6李建锋,彭舰.云计算环境下基于改进遗传算法的任务调度算法[J].计算机应用,2011,31(1):184-186. 被引量:204
  • 7彭蔓蔓,徐立超,王颖.异构多核处理器的任务分配及能耗的研究[J].计算机应用研究,2010,27(5):1729-1731. 被引量:15
  • 8GAN Guo-ning, HUANG Ting-lei, GAO Shuai. Ge- netic simulated annealing algorithm for task scheduling based on cloud computing environment [C]// Interna- tional Conference on Intelligent Computing and Inte- grated Systems (ICISS), Guilin, China: IEEE, 2010: 60-63.
  • 9Kolodziej J, Khan S, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids[C]//2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Barcelona, Catalonia, Spain: IEEE, 2011:17-24.
  • 10俞莉花,曾国荪.异构计算中的时间和能耗优化执行方法[J].计算机科学,2011,38(10):285-290. 被引量:2

二级参考文献81

共引文献255

同被引文献74

  • 1吴俊,陈晴,罗军舟.时隙间迭代的输入队列交换机Round-Robin调度算法[J].软件学报,2005,16(3):375-383. 被引量:12
  • 2曲福恒,崔广才,李岩芳,等.模糊聚类算法及应用[M].北京:国防工业出版社,2011.
  • 3Brown R. Report to congress on server and data center energy efficiency public law[R]. Ernest Orlando Lawrence. Berkeley National Laboratory. Berkeley : LBN L-363 E, 2007 : 109 -431.
  • 4Hanfilton J. Cooperative expendable micro-slice servers (CEMS) :low cost,low power servers for internet-scale services[ C]//4th Biennial Conference on Innovative Data Systems Research (CIDR). California:California University Press,2009:93-98.
  • 5Wang L, Laszewski G, Dayal J. Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with dvfs[ C ]//Cluster, Cloud and Grid Computing (CCGrid) ,2010 10th IEEE/ACM International Conference on IEEE,2010(7) :68-137.
  • 6Cardosa M, Singh A. Exploiting spatio-temporal tradeoffs for energy-aware map reduce in the cloud[ J]. IEEE Transactions on Computers ,2012, 61 (12) :1737-1751.
  • 7Graubner P, Schmidtand M, Freisleben B. Energy-efficient management ofvrtua machines in Eucalyptus[C]//4th IEEE International Conference on Cloud Computing(CLOUD). Washington DC:IEEE Computer Society Press,2011:243-250.
  • 8Ge Y, Wei G. GA-based task scheduler for the cloud computing systems web information systems and mining (WISM) [ C ]//2010 International Conference on Data of Conference. Princeton : Scientific Research Press ,2010 : 181-186.
  • 9Zhang L, Chen Y. A task scheduling algorithm based on PSO for grid computing [J]. International Journal of Computational Intelligence Research,2008,4( 1 ) :37-43.
  • 10Leverich J, Kozyrakis C. On the energy (in) efficiency of Hadoop casters[ J]. Newsletter ACM SIGOPS Operating Systems Review archive, 2010,44(1 ) :61-65.

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部