期刊文献+

结合SVM和KNN的Web日志挖掘技术研究方法 被引量:4

Research method of Web log mining technology with combination of SVM and KNN
在线阅读 下载PDF
导出
摘要 将SVM和KNN算法结合在一起,组成一种新的Web文本分类算法——SVM-KNN算法。当Web文本和SVM最优超平面的距离大于预选设定的阈值,则采用SVM进行分类,反之采用SVM作为代表点的KNN算法对样本分类。实证结果表明,SVM-KNN分类算法的分类精度比单纯SVM或KNN分类算法有不同程度的提高,为Web数据挖掘提供了一种有效的分类方法。 This paper used SVM and KNN algorithm together to form a new classification algorithm for Web text—SVM-KNN algorithm.When optimal super plane distance of Web text and SVM was greater than the preselected threshold,used SVM to classify,otherwise it adopted KNN algorithm to classify the samples of SVM as the representative point.The experimental results show that the accuracy of SVM-KNN classification algorithm are better than pure SVM or KNN classification algorithm,and the Web text classification provides an effective classification method.
作者 曾俊
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1926-1928,共3页 Application Research of Computers
基金 教育部2009年"春晖计划"资助项目(Z2009-1-63004)
关键词 支持向量机 数据挖掘 网页分类 特征提取 support vector machines(SVM) data mining(DM) Web classification feature selection
  • 相关文献

参考文献10

二级参考文献74

  • 1庄东,陈英.基于加权近似支持向量机的文本分类[J].清华大学学报(自然科学版),2005,45(S1):1787-1790. 被引量:16
  • 2[5]Kohonen T. Automatic formation of topological maps in self-organizing s ystem[A]. Oja E, Simula O. Proceedings of the 2nd Scand Inavian Conf on Image Analysis[C]. 1981.214~220
  • 3[1]Salton G,Allan J,Buckley C, et al. Automatic analysis,theme generation and summarization of machine-readable texts[J].Science,1994,264:1421~1426
  • 4[2]William W C, Yoram S. Context-sensitive learning methods for text categoriza tion [A]. Hans-Pater Frei,Donna Harman,Peter Schanble. Nineteenth Annual Inte rnational ACM SIGIR Conference on Research and Development in Information Retrie val[C]. Zurich:1996.307~315
  • 5[3]Kivinen J, Warmuth M K. Exponentiated gradient versus gradient decent for li near predictors[R].Santa Cruz:University of California,1994
  • 6[4]David L, Robert S, James P C, et al. Training algorithms for linear class ifiers [A]. Hans-Peter Frei,Donna Harman,Peter Schanble. Nineteenth Annual In ternational ACM SIGIR Conference on Research and Development in Information Retr ieval[C]. Zurich:1996.298~300
  • 7Feldman R, Dagan I. Knowledge Discovery in Textual Database (KDT) [C]. Proc. of the 1^st Int'1 Conf on knowledge Discovery Montreal, 1995.112-117.
  • 8Wuthrich B, et al. daily Prediction of Major Stock Indices from Textual WWW data [ C ]. Proc of the 4^th Int' 1 Conf on Knowledge Discovery. New York, 1998.
  • 9Salton G,Wong A,Yang C S.A Vector Space Model for Automatic indexing [ J ]. Communications of the ACM, 1975,18(5) :613-620.
  • 10Zaiane 0 R, Hart J,et al. Multimedia-miner: A System Prototype for Multimedia Data Mining[C]. Proc of 1998 ACM SIGMOD Conf On managemeent of Data. Seattle, 1998.581-583.

共引文献171

同被引文献32

  • 1周元哲,陈莉君.粗糙集技术在WEB网站的应用[J].西安邮电学院学报,2005,10(1):79-81. 被引量:3
  • 2王艳,张帆,杨炳儒.基于Web挖掘的数字图书馆个性化技术研究[J].情报杂志,2007,26(1):37-38. 被引量:5
  • 3卢苇,彭雅.几种常用文本分类算法性能比较与分析[J].湖南大学学报(自然科学版),2007,34(6):67-69. 被引量:31
  • 4李华雄,周献中等. 决策粗集糙理论预期研究进展[M]. 北京:科学出版社,2011.
  • 5GHOSH A K, CHAUDHURI P, Murthy C A. Multi scale classification using nearest neighbor density estimates[J]. IEEE Transactions on Systems man and Cybernetics-Part 13: Cybernetics, 2006, 36(5): 1139-1148.
  • 6TONG S, KOLLER D. Support vector machine active learning with applications to text classification [-J]. Journal of Learning Research, 2001, 2 (1) : 45- 66.
  • 7LEWIS D, YANG Y, ROSE T, et al. RCV1: A new benchmark collection for text categorizationresearch [J].Journal of Machine Learning Research, 2004, 5(1): 361-397.
  • 8JOACHIMS T. Transductive inference for text classification using support vector machines [C]// Proceedings of the 16th International Conference on Machine Learning. New York: ACM, 1999: 200- 209.
  • 9JOACHIMS T. Text categorization with support vector machines: Learning with many relevant features [ C]//Proceedings of the lOth European Conference on Machine Learning. Berlin: Springer, 1998: 137-142.
  • 10ZHANG Bin, SRIHARI S N. Fast k-nearest neighbor classification using cluster-based trees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(4):525-528.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部