期刊文献+

基于KPCA-LSSVM的丁苯橡胶聚合转化率软测量 被引量:1

Soft-sensing for polymerization conversion rate of styrene-butadiene rubber based on KPCA-LSSVM model
在线阅读 下载PDF
导出
摘要 针对丁苯橡胶聚合转化率需在线实时预测,考虑实际工况的复杂性,首先采用具有较强非线性特征提取能力的核主元分析(KPCA)对数据进行前期处理,然后将其结果作为具有学习速度快、泛化能力强的最小二乘支持向量机(LSSVM)的输入,并以交叉验证法对LSSVM参数寻优,从而获得丁苯橡胶聚合转化率软测量模型.经采用工业现场数据仿真研究,聚合转化率预测绝对误差大于1.5的比例小于样本总数的10%,说明该模型预测精度能满足生产要求. Aimed at the necessity of real-time prediction of polymerization conversion rate of styrene-butadiene rubber and taking account of the complexity of actual working condition,the kernel principal component analysis(KPCA) method with a strong ability of nonlinear feature extraction was used to process the data firstly.And then its result was taken as input of the least squares support vector machines(LSSVM) model with the ability of fast learning and good generalization.Cross validation method was used for the parameters optimization of the LSSVM model.Finally,a prediction model was obtained for polymerization conversion rate of SBR.It was shown by the simulation result of industrial field data that the ratio of polymerization conversion amount to the overall amount of the samples was less than 10% when the absolute error of polymerization conversion prediction was greater than 1.5,showing that the model's prediction accuracy could satisfy the production requirements.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第2期73-77,共5页 Journal of Lanzhou University of Technology
关键词 核主元分析 最小二乘支持向量机 丁苯橡胶 聚合转化率 kernel principal component analysis least square support vector machine styrene-butadiene rubber polymerization conversion rate
  • 相关文献

参考文献18

  • 1刘美,黄道平,李桢.丁苯橡胶门尼粘度软测量[J].自动化仪表,2008,29(12):33-34. 被引量:7
  • 2俞金寿,孙自强.过程自动化及仪表[M].北京:化学工业出版社,2009:188.
  • 3李桢,肖迳,刘美.基于NNPLS的丁苯橡胶门尼粘度预测[J].微计算机信息,2008,24(30):247-249. 被引量:2
  • 4刘美,黄道平,孙宗海.基于PCA和LS-SVM的丁苯橡胶的门尼粘度预测[J].计算机与应用化学,2008,25(11):1317-1320. 被引量:3
  • 5李炜,章寅,倪源.基于集成修剪的丁苯橡胶聚合转化率软测量[J].仪器仪表学报,2011,32(1):212-217. 被引量:2
  • 6IKOPF SCHB,SMOLA A,MLLER K R.Nonlinear com-ponent analysis as a kernel eigenvalue problem[J].NeuralComputation(S0899-7667),1998,10(5):1299-1319.
  • 7JADEA M,SRIKANTH B,JAYARAMAN V K,et al.Featureextraction and denoising using kernel PCA[J].Chemical Engi-neering Science,2003,58(19):4441-4448.
  • 8WIDODO A,YANG B S.Application of nonlinear feature ex-traction and support vector machines for fault diagnosis of in-duction motors[J].Expert Systems with Applications,2007,33(1):241-250.
  • 9SUYKENS J A K,VANDEWALLE J.Least squares supportvector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 10SUYKENS J A K.Nonlinear Modeling and Support VectorMachines[C]//IEEE Instrumentation and MeasurementTechnology Conf.Budapest:[s.n.],2001:108-119.

二级参考文献59

共引文献44

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部