期刊文献+

结构光系统结合数码相机的小物体高质量纹理重建 被引量:6

High Quality Texture Reconstruction for Small Objects Based on Structure Light Scanning System with Digital Camera
原文传递
导出
摘要 针对双鸟饕餮纹夔神鼍鼓等小文物或其他小型物体,提出了基于结构光扫描系统结合普通高分辨率单反数码相机的纹理重建方法。该方法具有自动化程度高、效率和质量高的特点,其中主要解决了单张高分辨率影像与物体几何模型的自动配准,以及配准后从多张影像生成无缝纹理模型的问题。实验证明了本文方法的可行性和有效性。 3D models with high quality and realistic texture is a very significant topic in the field of digital museum,heritage conservation,and so on.For the small bronze artifact Shuangniaotaotiewenkushentuogu and other small objects,we propose a new texture reconstruction method of high-automation,high-efficient,and high-quality.Based on the structure light scanning system with common digital camera,our approach mainly resolved the registration for a single high-resolution image,and the seamless texture generation from multi-view images.Massive reconstruction tests proved the feasibility and validity of this method.
作者 郑顺义 周漾
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第5期529-533,633,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41071293) 武汉大学研究生自主科研资助项目(213276401)
关键词 数字文物 纹理重建 影像配准 无缝纹理 digital heritage texture reconstruction image registration seamless texture
  • 相关文献

参考文献13

  • 1张祖勋,张剑清.城市建模的途径与关键技术[J].世界科技研究与发展,2003,25(3):23-29. 被引量:64
  • 2赵煦,周克勤,闫利,邓非.基于激光点云的大型文物景观三维重建方法[J].武汉大学学报(信息科学版),2008,33(7):684-687. 被引量:59
  • 3翟瑞芳.激光点云和数字影像结合的小型文物重建研究[D].武汉:武汉大学,2006.
  • 4Lempitsky V, Ivanov D. Seamless Mosaicing of Im- age-Based Texture Maps[C]. IEEE Computer Soci- ety Conference on Computer Vision and Patten Recoginition, Minneapolis, 2007.
  • 5Allene C, Pons J P, Keriven R. Seamless Image- Based Texture Atlases Using Multi-band Blending [C]. The 19th International Conference on Pattern Recognition, Tampa, Florida, USA, 2008.
  • 6Gal R, Wexler Y, Ofek E, et al. Seamless Montage for Texturing Models[J]. Computer Graphics Fo- rum, 2010, 29(2): 479-486.
  • 7钟成,李卉,黄先锋,李德仁.利用6元组松弛法自动配准LiDAR数据与航空影像[J].武汉大学学报(信息科学版),2009,34(12):1426-1430. 被引量:15
  • 8邓非,杨海关,李丽英.基于互信息的LIDAR与光学影像配准方法[J].测绘科学,2009,34(6):51-52. 被引量:14
  • 9P6rez P, Gangnet M. Poisson Image Editing[C]. ACM SIGGRAPH, San Piego, 2003.
  • 10Mikolajczik K, Schmidt C. tion of Local Descriptors[J] A Performance Evalua- IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1 615-1 630.

二级参考文献49

共引文献193

同被引文献41

  • 1李治江,张祖勋,张剑清.三维重建中真实感纹理再现的一种有效方法[J].地理空间信息,2004,2(6):34-36. 被引量:3
  • 2隋立春,张宝印.Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129. 被引量:55
  • 3郭玲,王建宇,黄炎焱.真实感3D重建中的纹理映射技术[J].中国图象图形学报,2007,12(10):1881-1884. 被引量:11
  • 4Stamos I. Automated registration of 3D-range with 2D-color ima- ges: an overview[ C ]// Proceedings of the 44th Annual Confer- ence on Information Sciences anti Systems. Princeton, New Jersey: 1EEE, 2010: 1-6. [ DOI: 10. I109/CISS. 2010. 5464815 ].
  • 5Franken T, Dellepiane M, Ganovelli F, e! al. Minimizing user intervention in registering 2D images !o 3|) models[ J ]. The Vis- ual Computer, 2005,21 (8-10): 619-628. [ DOI: 10. 1007/ s00371 -.005 -0309 -z ].
  • 6Viola P~ Wells W M. Alignment by maximization of mutual infi~r- marion[ J ]. International Journal of Computer Vision, 1997, 24(2) :137-154. [ DOI: 10. 1023/A:1007958904918].
  • 7C|eju I, Saupe D. Stochastic ~ptimizatinn of' multiple texture reg- istration using mutual information [ M ] //Pattern Recognition. Berlin Heidelberg, Germany : Springer, 2007,4713 : 517-526. [DOI: 10. 1007/978-3-540-74936-3_52 ].
  • 8Corsini M, Dellepiane M, Ponehiu F, el al. Image-to-geometry registration: a mutual infnrmation method exploiting iUumination- related geometric properties [ J ]. Cmnputer Graphics Forum, 2009,28 ( 7 ) : 1755-1764. [DOI : 10.11 I l/j. 1467-8659. 2009. 01552. x].
  • 9Sottile M, Dellepiane M, Cignoni P, el al. Mutual correspon- dences : an hybrid me/hod forimage-to-geomet~ registration [ C]//Proceedings of Eurographics Italian Chapter Conference. Genova, Italy : EGITALY, 2010 : 81-88.
  • 10Corsini M, Dellepiane M, Ganovelli F, et al. Fully automatic registration of image sets on approxinlate geomett7 [ J ]. interna- tional Journal of Computer Vision, 2012, 102 ( I-3 ) : 1-21. [DOI: 10. 1007/s11263-012-0552-5 !.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部