期刊文献+

Au纳米粒子二维周期阵列的LSPR消光特性分析 被引量:8

Analysis of LSPR extinction properties of two-dimensional Au nanoparticle arrays
原文传递
导出
摘要 采用离散偶极子近似(DDA)方法,对不同间距的Au纳米粒子阵列在不同介质情况下的消光特性进行仿真分析。分析结果表明,消光峰值波长和强度随纳米粒子间距的减小而增大,但在间距较大的情况下折射率灵敏度基本不变。实验测量结果也表明,不同的密度分布的Au纳米球阵列对应了基本相同的折射率灵敏度。因此,在纳米粒子间距较大时,纳米粒子阵列局部分布的不均匀不会改变整体的折射率灵敏度,相同的消光峰值波长红移量对应相同的介质折射率变化量。 The extinction properties of the Au nanoparticle arrays with different spacings in different media are simulated by Discrete Dipole Approximation(DDA) method.The simulation result demonstrates that the extinction wavelength and intensity increase with the decreasing spacing,but the refractive index(RI) sensitivity remains constant while the spacing is large enough.And the experimental measurements of the Au nanosphere arrays assembled on the glass substrate also obtain the same RI sensitivity with different density distributions of nanoparticles in the arrays.Therefore,the local uneven distribution of the nanoparticle arrays would not change the RI sensitivity as the spacing between nanoparticles is large enough,and the red-shift of the extinction wavelength and the RI change of the surrounding medium are related directly.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第5期1005-1010,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60574091 60871028 61001056) 天津市自然科学基金(08JCYBJC12500 10JCZDJC15300) 天津市科技计划(06YFGPGX08700 09ZCKFGX01200)资助项目
关键词 局域表面等离子体共振(LSPR) 离散偶极子近似(DDA) AU纳米粒子 周期阵列 消光特性 Localized Surface Plasmon Resonance(LSPR) Discrete Dipole Approximation(DDA) Au nanoparticles periodic array extinction property
  • 相关文献

参考文献6

二级参考文献103

共引文献9

同被引文献55

  • 1巴音贺希格,唐玉国,齐向东.二维平面光栅角色散公式的完整解析形式及分析[J].物理学报,2004,53(12):4181-4188. 被引量:6
  • 2WANG Shi-jun, HUANG Yong-zhen. Eight-channel add- drop microring filters on SOl wafer[J]. Journal of Optoe- lectronics : Laser,2010,21(8) ;1125-1128.
  • 3Bian F,Tian Y C,Wang R,et al. Ultrasmall silver nanop- ores fabricated by femtosecond laser pulses[J]. Nano Letters, 2011,11 ,,,3251-3257.
  • 4Rajeevan K, Erwin B, Henri J,et al. Fabrication of micron- sized tetrahedra by Si:l 1 1: micromachining and re- traction edge lithography[J]. Journal of Micromechanics and Microengineering, 2012,22 : 085032.
  • 5Papakostas A, Potts A, Bagnall D M,et al. Optical mani- festations of planar chirality[J]. Physics Reviewer Let- ters,2003,90(10) : 107404.1-4.
  • 6Konishi K,Sugimoto T,Bai B,et al. Effect of surface plas- mon resonance on the optical activity of chiral metal nanogratings[ J]. Optics Express, 2007, 15 (15),, 9575- 9583.
  • 7Vallius T, Jefimovs K,Turunen J, et al. Optical activity in subwavelength-period arrays of chiral metallic particles [J]. Applied Physics Letters,2003,83(2) :234-236.
  • 8Rogacheva V, Fedotov V A,Schwanecke A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilay- ered chiral structure[J]. Phys Rev Lett, 2006,97 (17) :177401.1-4.
  • 9Zari D,Oraizi H, Soleimani M. Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers [J]. Progress In Electromagnetics Research, 2012,123 : 337-354.
  • 10Andrey V N,Vladimir M G,Sergei V Z. Asymmetric trans- mission in planar chiral split-ring metamaterials: Micro- scopic Lorentz-theory approach[J]. Physical Review B, 2012,86:075138.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部