期刊文献+

基于G-P算法的快速路交通流参数相空间重构 被引量:17

Phase space reconstruction of traffic flow parameters on expressway based on G-P algorithm
在线阅读 下载PDF
导出
摘要 提出了一种基于混沌分析的G-P(Grassberger-procaccia algorithm)算法将非平稳交通流参数时间序列近似转化为平稳时间序列的方法。首先采用自相关函数判断自由流状态、拥挤流状态和阻塞流状态下交通流基本参数时间序列的平稳性。然后应用G-P算法计算嵌入维,进行相空间重构,给出交通流参数时间序列平稳化方法。最后利用快速路交通流实测数据,对3种状态下非平稳的交通流参数时间序列的平稳化进行验证,结果表明:本文方法能够为交通流参数分析、拟合和预测提供科学合理的输入集。 Due to complicacy,randomness and nonlinearity of traffic system,traffic flow parameters are usually considered as the random time series.A method based on G-P algorithm that is helpful to convert the traffic flow time series to stationarity series was proposed.First,the autocorrelation function was adapted to evaluate the stationary of traffic flow under free traffic,congested traffic and jam traffic.Second,G-P algorithm was used to calculate the embedding dimension,reconstruct the phase space,and convert the traffic flow non-stationary parameters to stationary time series under 3 traffic states.At last,some examples illustrated the model and showed its practical applicability based on measured traffic flow data.The research can provide the input set for the traffic flow parameters analysis,fitting and prediction.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期594-599,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51178032) “973”国家重点基础研究发展计划项目(2006CB705500) 中国发展研究基金会2009年度“通用汽车.中国发展研究青年奖学金”项目 北京交通大学优秀博士生科技创新基金项目(141082522)
关键词 交通运输系统工程 自由流状态 拥挤流状态 阻塞流状态 G-P算法 相空间重构 engineering of communications and transportation free traffic congested traffic jam traffic G-P algorithm phase space reconstruction
  • 相关文献

参考文献10

  • 1蒋海峰,魏学业,张屹,钱大琳.仿真交通流混沌特性研究[J].系统仿真学报,2007,19(12):2809-2812. 被引量:7
  • 2Dendrinos D S.Traffic-flow dynamics:a search for chaos[J].Chaos Solitons & Fractals,1994,4(4):605-617.
  • 3蒋海峰,王鼎媛,张仲义.短时交通流的非线性动力学特性[J].中国公路学报,2008,21(3):91-96. 被引量:4
  • 4李松,贺国光.高速公路交通流混沌特性研究[J].公路交通科技,2006,23(10):91-94. 被引量:6
  • 5Kerner B S.Three-phase traffic theory and highway capacity[J].Physica A,2004,333:379-440.
  • 6Kerner B S, Klenov S L, Hiller A.Empirical test of a microscopic three-phase traffic theory[J].Nonlinear Dyn,2007,49(4):525-553.
  • 7姜桂艳,牛世峰,常安德.基于检测数据的路网交通运行可靠性分析[J].吉林大学学报(工学版),2011,41(5):1216-1221. 被引量:8
  • 8Packard N H, Grutchfield J P, Farmer J D,et al.Geometry from a time series[J].Physical review letters,1980,45(9):712-716.
  • 9Takens F.Determing strang attractors in turbulence[J].Lecture notes in Math,1981,898:361-381.
  • 10Grassberger P, Procaccia I.Measuring the strangeness of strange attractors[J].Physica D,1983,9(1/2):189-208.

二级参考文献32

  • 1贺国光,万兴义.基于混沌判据评价几类跟驰模型合理性的仿真研究[J].系统工程理论与实践,2004,24(4):123-129. 被引量:5
  • 2蒋海峰,马瑞军,魏学业,温伟刚.一种基于小数据量的快速识别短时交通流混沌特性的方法[J].铁道学报,2006,28(2):63-66. 被引量:7
  • 3Mine H, Kawai H. Mathematics for Reliability A- nalysis[M]. Tokyo: Asakura-shoten, 1982.
  • 4Bell M G H, Iida Y. Transportation Network Anal- ysis[M]. New York: John Wiley &Sons,1997.
  • 5Asakura Y, Kasbiwadani M. Road network caused by daily fluctuation of traffic flow[C] // Proceedings of the 19th PTRC Summer Annual Meeting, Brigh- ton,1991.
  • 6Chen A, Tatneni M, Lee D H, et al. Effect of route choice models on estimating network capacity relia- bility[J]. Transportation Research Record, 2000, 1733 : 63-70.
  • 7Lo H K, Tung Y K. Network with degradable links., capacity analysis and design[J]. Transporta- tion Research Part B, 2003, 37(4): 345-363.
  • 8Liu H X, Recker W, Chen A. Uncovering the con- tribution of travel time reliability dynamic route choice using real-time loop data[J]. Transportation Research Part A, 2004,38(6) :435-453.
  • 9National Research Council. Highway capacity manu- al 2000[Z]. Washington DC: TRB, 2000.
  • 10张智勇 荣建 任福田.跟驰车队中的混沌现象研究[J].土木工程学报交通工程分册,2001,12(1):58-59.

共引文献21

同被引文献170

引证文献17

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部