期刊文献+

一种基于随机化视觉词典组和查询扩展的目标检索方法 被引量:9

An Object Retrieval Method Based on Randomized Visual Dictionaries and Query Expansion
在线阅读 下载PDF
导出
摘要 在目标检索领域,当前主流的解决方案是视觉词典法(Bag of Visual Words,BoVW),然而,传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题。针对以上问题,该文提出了一种基于随机化视觉词典组和查询扩展的目标检索方法。首先,该方法采用精确欧氏位置敏感哈希(Exact Euclidean LocalitySensitive Hashing,E2LSH)对训练图像库的局部特征点进行聚类,生成一组支持动态扩充的随机化视觉词典组;然后,基于这组词典构建视觉词汇分布直方图和索引文件;最后,引入一种查询扩展策略完成目标检索。实验结果表明,与传统方法相比,该文方法有效地增强了目标对象的可区分性,能够较大地提高目标检索精度,同时,对大规模数据库有较好的适用性。 In object retrieval area,the current mainstream solution is Bag of Visual Words(BoVW) method,but there are several problems existing in the conventional BoVW methods,such as low time efficiency and large memory consumption,the synonymy and ambiguity of visual words.In this paper,a method based on randomized visual dictionaries and query expansion is proposed considering the above problems.Firstly,Exact Euclidean Locality Sensitive Hashing(E2LSH) is used to cluster local features of the training dataset,and a group of scalable randomized visual vocabularies is constructed.Then,the visual words distribution histograms and index files are created according to these randomized vocabularies.Finally,a query expansion strategy is introduced to accomplish object retrieval.Experimental results indicate that the distinguishability of objects is effectively improved and the object retrieval accuracy of the novel method is boosted dramatically compared with the classical methods,besides,it adapts large scale datasets well.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第5期1154-1161,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872142) 全军军事学研究生课题资助项目
关键词 目标检索 视觉词典法 随机化视觉词典组 精确欧氏位置敏感哈希 查询扩展 Object retrieval Bag of Visual Words(BoVW) method Randomized visual dictionaries Exact Euclidean Locality Sensitive Hashing(E2LSH) Query expansion
  • 相关文献

参考文献20

  • 1Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 2Sivic J and Zisserman A.Video Google:a text retrievalapproach to object matching in videos[C].Proceedings of 9thIEEE International Conference on Computer Vision,Nice,2003:1470-1477.
  • 3Jurie F and Triggs B.Creating efficient codebooks for visualrecognition[C].Proceedings of International Conference onComputer Vision,Beijing,2005:604-610.
  • 4Canada Idée Inc.Reverse image search system.http://www.tineye.com[2011-03].
  • 5Google Company.Google goggles.http://www.google.com/mobile/goggles/[2011-03].
  • 6Nister D and Stewenius H.Scalable recognition with avocabulary tree[C].Proceedings of IEEE Conference onComputer Vision and Pattern Recognition,New York,2006:2161-2168.
  • 7Philbin J,Chum O,Isard M,et al..Object retrieval withlarge vocabularies and fast spatial matching[C].IEEEConference on Computer Vision and Pattern Recognition.Minneapolis,June 17-22,2007:1-8.
  • 8Cao Yang,Wang Chang-hu,Li Zhi-wei,et al..Spatial-bag-of-features[C].IEEE Conference on Computer Visionand Pattern Recognition,San Francisco,USA,2010:3352-3359.
  • 9Marée R,Denis P,Wehenkel L,et al..Incremental indexingand distributed image search using shared randomizedvocabularies[C].Proceedings of MIR’10,Philadelphia,USA,2010:91-100.
  • 10Van Gemert J C,Snoek M,et al..Comparing compactcodebooks for visual categorization[J].Computer Vision andImage Understanding,2010,114(4):450-462.

同被引文献83

  • 1冯兵,李芝棠,花广路.基于灰度—梯度共生矩阵的图像型垃圾邮件识别方法[J].通信学报,2013,34(S2):1-4. 被引量:11
  • 2林海卓,王继龙,吴建平,杨家海,徐聪.高校误判垃圾邮件自动召回系统的研究与实现[J].通信学报,2013,34(S2):121-132. 被引量:1
  • 3Gabriella C,Christopher R Dance,et al.Visual categorization with bags of keypoints[A].Proceedings of ECCV International Workshop on Statistical Learning in Computer Vision[C].Prague:Xerox,2004.1-22.
  • 4Lazebnik S,Schmid C,Ponce J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2006.2169-2178.
  • 5Dalal N,Bill Triggs.Histograms of oriented gradients for human detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2005.886-893.
  • 6Harzallah H,Jurie F,Schmid C.Combining efficient object localization and image classification[A].Proceedings of IEEE 12th International Conference on Computer Vision[C].USA:IEEE,2009.237-244.
  • 7Lowe D G.Distinctive image features from scale-invariant keypoint[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8Wang J J,Yang J C,Yu K.Locality-constrained linear coding for image classification[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2010.3360-3367.
  • 9Bo L F,Ren X F,Fox D.Kernel descriptors for visual recognition[A].Proceedings of Advances in Neural Information Processing Systems[C].USA:NIPS,2010.244-252.
  • 10Li Fei-Fei,et al.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding,2004,106(1):59-70.

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部