期刊文献+

广义d_Ⅰ-Ⅴ-Ⅰ型一致不变凸条件下的不可微多目标规划问题 被引量:1

Nondifferentiable Multiobjective Programming Problem under Generalized d_Ⅰ-Ⅴ-Type-Ⅰ Univexity
在线阅读 下载PDF
导出
摘要 利用dⅠ-不变凸性,提出一类新的广义dⅠ-Ⅴ-Ⅰ型一致不变凸的概念.考虑带不等式约束的不可微多目标规划问题,并在广义dⅠ-Ⅴ-Ⅰ型一致不变凸性条件下,得到了一些最优性充分条件,同时建立一个Mond-Weir型对偶,并证明了弱对偶、逆对偶和严格对偶定理. With the help of dⅠ-invexity,a new class of concept of generalized dⅠ-Ⅴ-type-Ⅰ univexity was introduced and a nondifferentiable multiobjective programming problem with inequality constraints was considered and some sufficient optimality conditions were derived under the assumptions of generalized dⅠ-Ⅴ-type-Ⅰ univexity.Furthermore,a Mond-Weir type dual was formulated and weak duality,converse duality and strict duality theorems were proved.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期391-396,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60974082) 国家重点实验室专项科研基金(批准号:ISN02080003)
关键词 多目标规划 广义dⅠ-不变凸性 Ⅰ型一致不变凸 最优充分性 对偶 multiobjective programming generalized dⅠ-invexity type-Ⅰ univexity sufficient optimality duality
  • 相关文献

参考文献13

  • 1Staneu-Minasian I M. Optimality and Duality in Nonlinear Programming Involving Semilocally B-Preinvex and Related Functions [ J ]. European Journal of Operational Research, 2006, 173 ( 1 ) : 47-58.
  • 2Niculescu C. Optimality and Duality in Muhiobjective Fractional Programming Involving p-Semilocally Type I -Preinvex and Related Functions [ J]. Journal of Mathematical Analysis and Its Applications, 2007, 335 (1) : 7-19.
  • 3Fulga C, Preda V. Nonlinear Programming with E-Preinvex and Local E-Preinvex Functions [ J ]. European Journal of Operational Research, 2009, 192 (3) : 737-743.
  • 4Hanson M A, Mond B. Necessary and Suficient Conditions in Constrained Optimization [ J ]. Mathematical Programming, 1987, 37(1): 51-58.
  • 5Kaul R N, Suneja S K, Srivastava M K. Optimality Criteria and Duality in Multiple-Objective Optimization Involving Generalized Invexity [ J]. Journal of Optimization Theory and Its Applications, 1994, 80(3) : 465482.
  • 6Hanson M A, Pini R, Singh C. Multiobjective Programming under Generalized Type I Invexity [ J ]. Journal of Mathematical Analysis and Its Applications, 2001, 261(2) 562-577.
  • 7Mishra S K, Wang S Y, Lai K K. Optimality and Duality in Nondifferentiable and Multiobjective Programming under Generalized d-Invexity [J]. Journal of Global Optimization, 2004, 29(4): 425438.
  • 8Antczak T. Optimality Conditions and Duality for Nondifferentiable Multiobjeetive Programming Problems Involving d-r-Type I Functions [ J ]. Journal of Computational and Applied Mathematics, 2009, 225 ( 1 ) : 236-250.
  • 9Jayswal A, Kumar R. Some Nondifferentiable Muhiobjective Programming under Generalized d-V-type- I Univexity [J]. Journal of Computational and Applied Mathematics, 2009, 229(1 ) : 175-182.
  • 10Slimani H, Radjef M S. Nondifferentiable Multiobjective Programming under Generalized d I -Invexity [ J ]. European Journal of Operational Research, 2010, 202: 32-41.

同被引文献12

  • 1Chandra S, Kumar V. Duality in Fractional Minimax Programming [J]. J Aust Math Soc: Ser A, 1995, 58: 376-386.
  • 2Liu J C, Wu C S. On Minimax Fractional Optimality Conditions with (F,p)-Convexity [J]. J Math Anal Appl, 1998, 219(1): 36-51.
  • 3YANG Xin-ming, HOU Shui-hung. On Minimax Fractional Optimality and Duality with Generalized Convexity [J]. J Glob Optim, 2005, 31(2): 235- 252.
  • 4Mangasarian O I.. Second and Higher Order Duality in Nonlinear Programming [J]. J Math Anal Appl, 1975, 51(3): 607 -620.
  • 5Bector C R, Chandra S, Husain I. Second Order Duality for a Minimax Programming Problem [J]. Opsearch, 1991, 28:249-263.
  • 6Liu J C. Second Order Duality for Minimax Programming [J]. Util Math, 1999, 56: 53-63.
  • 7Mishra S K, Rueda N G. Second-Order Duality for Nondifferentiable Minimax Programming Involving Generalized Type I Functions [J]. J Optim Theory Appl, 2006, 130(3): 477-486.
  • 8Husain Z, Jayswal A, Ahmad I. Second Order Duality for Nondifferentiable Minimax Programming Problems with Generalized Convexity [J]. J Glob Optim, 2009, 44: 593-608.
  • 9Husain Z, Ahmad I, Sharma S. Second Order Duality for Minimax Fractional Programming [J].Optim Lett, 2009, 3(2): 277-286.
  • 10Sharma S, Gulati T R. Second Order Duality in Minimax Fractional Programming with Generalized Univexity [J]. J Glob Optim, 2012, 52(1): 161-169.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部