期刊文献+

用于海底底质分类的多波束声强数据选取研究 被引量:6

A Method of Sound Intensity Data Selection for Seafloor Classification
在线阅读 下载PDF
导出
摘要 高质量的海底声强图是进行多波束海底底质分类、目标识别的基础。要得到"单纯"反映海底底质信息的声强图,就需要对原始声强数据进行地形改正,消除地形因素的影响。在描述了多波束数据中水深数据不能满足声强数据的改正要求问题的基础上,提出了以水深数据覆盖范围为约束的声强数据选取方法。实例计算结果表明:该方法在能有效地选取高质量的声强数据,提高了基于声强图像的海底底质分类精度。 High-quality underwater sound image is the basis of seafloor classification by using sound images. Before the sonar image which is the pure reflection of seafloor is got, the impact of topography should be eliminated. After the problem of the range of depth data is less than that of sound intensity data correction is analyzed systematically, the method of sound intensity data selection based on the depth data range is proposed. The results show that this method can effectively select the high-quality sound intensity data, and improve the quality of seafloor classification by using sound images.
出处 《海洋测绘》 2012年第3期18-20,共3页 Hydrographic Surveying and Charting
基金 国家自然科学基金项目(40871207) 海军大连舰艇学院科研发展基金资助项目
关键词 多波束测深系统 声强图 底质分类 水深数据 声强数据 冗余声强 multibeam sounding system multibeam sonar image seafloor classification depth data sound intensity data redundant sound intensity
  • 相关文献

参考文献8

  • 1金绍华,翟京生,刘雁春,周兴华,李明叁,唐秋华.Simrad EM多波束反向散射强度数据精处理研究[J].测绘科学,2010,35(2):106-108. 被引量:26
  • 2唐秋华.多波束海底底质分类研究[D].青岛:国家海洋局第一海洋研究所,2003.
  • 3Kongsberg Maritime AS. EM Series Datagram formats Base [P]. Norway :850-160692/Rev. H. ,2004.
  • 4Urick R J, 1967 Principles of underwater Sound for Engineers [M].Mc Graw-Hill, 1967 : 342.
  • 5唐秋华,周兴华,丁继胜,刘忠臣,杜德文.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55. 被引量:42
  • 6Oliver, Aluizio M. Maximizing the Coverage and utility of Multibeam Backscatter for Seafloor Classification [D]. New Brunswick, University of New Brunswick, Fredericton ,2007.
  • 7金绍华 朱穆华 崔杨 等.多波束声纳图像的归一化方法.海军大连舰艇学院学报,2010,33(4):52-55.
  • 8孙文川,肖付民,金绍华,武同元,田勋.多波束回波强度数据记录方式比较[J].海洋测绘,2011,31(6):35-38. 被引量:4

二级参考文献27

  • 1Yang Fanlin1, Liu Jingnan2 1. GPS Engineering Research Center, Wuhan University, Wuhan 430079, China. 2. Presidential Secretariat, Wuhan University, Wuhan 430079, China.Seabed Classification Using BP Neural Network Based on GA[J].Acta Oceanologica Sinica,2003,22(4):523-531. 被引量:3
  • 2唐秋华,周兴华,丁继胜,刘忠臣,杜德文.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55. 被引量:42
  • 3黄谟涛.多波束测深技术研究进展与展望[J].海洋测绘,2000,78(3):2-7.
  • 4Augustin J M, X Lurton. Image amplitude calibration and processing for seafloor mapping sonars [ C ] //Proceedings of the Oceans' 2005 Europe Conference. 1, Brest, France, 2005, 20-23 June: 698-701.
  • 5Beaudoin J D, J E Hughes Clarke, E J V D Ameele, J V Gardner. Geometric and radiometric corrections of multibeam backscatter derived from Reson 8101 systems [ C ] //Proceedings of Canadian Hydrographic Confer- ence. Toronto, Canada, 2002, 28-31May.
  • 6Hughes Clarke J E, L A Mayer, D E Wells. Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf [J].Marine Geophysical Researches, 1996, 18.
  • 7Hellequin L, J M Boucher, X Lurton. Processing of high-frequency muhibeam echo sounder data for seafloor characterization [ J ] . Journal of oceanic Engineering, 2003, 28(1) .
  • 8Urick R J. Principles of underwater Sound for Engineers [R] . Mc Graw-Hill, 1967: 342.
  • 9Francois R E, and G R Garrison. Sound absorption based on ocean measurements: part Ⅱ: Boric acid contribution and equation for total absorption [ J ] . The Journal of the Acoustical Society of America, 1982, 72(6) .
  • 10Lurton X. Dugelay S and Augustin J M. Analysis of muhibeam echo-sounder signals from the dee Pseafloor [C] //IEEE OCEAN' 94. 1994: 213-218.

共引文献59

同被引文献31

  • 1吴自银,郑玉龙,初凤友,陶春辉,高金耀.海底浅表层信息声探测技术研究现状及发展[J].地球科学进展,2005,20(11):1210-1217. 被引量:36
  • 2唐秋华,周兴华,丁继胜,刘忠臣,杜德文.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55. 被引量:42
  • 3唐秋华,刘保华,陈永奇,周兴华,丁继胜.基于自组织神经网络的声学底质分类研究[J].声学技术,2007,26(3):380-384. 被引量:8
  • 4金翔龙.海洋地球物理研究与海底探测声学技术的发展[J].地球物理学进展,2007,22(4):1243-1249. 被引量:91
  • 5Kongsberg Company Inst Ruction Manual. EM Series Multibeam Echo Sounders Datagram Sormats [ EB/OL]. http//www, kongsberg, com/,2010-06-15.
  • 6Dimitrios E, Alireza A S, Miriam S. Improving Riverbed Sediment Classification Using Backscatter and Depth Resid- ual Features of Multi-beam Echo-sounder Systems[J]. A- coustical Society of America, 2012,131 (5) ; 3 710-3 725.
  • 7SMRAD. Instruction Manual of Simrad Triton Seabed Classification[M]. Norway: Simrad Company, 1998.
  • 8何髙文.大洋多金属结核和富钴结壳底质地球化学特征与成矿机制对比研究[D].广州:中山大学,2006.
  • 9Alexandrou D,Pantzartzis D. Seafloor classification withneural network [C] // Proceeding of OCEANS? 90. Engi*neering in the Ocean Enviroment, 1990 : 18-23.
  • 10Huseby R B,Milvang O,Solberg R. Seabed classificationfrom multibeam echosounder data using statistical methods[C]//Proceedings of OCEANS’93. Engineering in Harmo-ny with Ocean. 1993 ,3(3) ; 229-233.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部