期刊文献+

大间隔最小压缩包含球学习机 被引量:1

Large Margin and Minimal Reduced Enclosing Ball Learning Machine
在线阅读 下载PDF
导出
摘要 为了提高球形分类器的分类性能,受支持向量机和小球体大间隔等方法的启发,提出一种大间隔最小压缩包含球(large margin and minimal reduced enclosing ball,简称LMMREB)学习机,其在Mercer核诱导的特征空间,通过优化一个最小包含球,以寻求两个同心的分别包含二类模式的压缩包含球,且使二类模式分别与压缩包含球间最小间隔最大化,从而可以同时实现类间间隔和类内内聚性的最大化.分别采用人工数据和实际数据进行实验,结果显示,LMMREB的分类性能优于或等同于相关方法. In this paper, inspired by the support vector machines for classification and the small sphere and large margin method, the study presents a novel large margin minimal reduced enclosing ball learning machine (LMMREB) for pattern classification to improve the classification performance of gap-tolerant classifiers by constructing a minimal enclosing hypersphere separating data with the maximum margin and minimum enclosing volume in the Mercer induced feature space. The basic idea is to find two optimal minimal reduced enclosing balls by adjusting a reduced factor parameter q such that each of binary classes is enclosed by them respectively and the margin between one class pattern and the reduced enclosing ball is maximized. Thus the idea implements implementing both maximum between-class margin and minimum within-class volume. Experimental results obtained with synthetic and real data show that the proposed algorithms are effective and competitive to other related diagrams.
出处 《软件学报》 EI CSCD 北大核心 2012年第6期1458-1471,共14页 Journal of Software
基金 国家自然科学基金(60975027 60903100) 宁波市自然科学基金(2009A610080)
关键词 泛化 支持向量数据描述 支持向量机 最小包含超球体 generalization support vector data description support vector machine minimum enclosinghypersphere
  • 相关文献

参考文献2

二级参考文献20

  • 1Yan S C, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 2Murase H, Nayar S K. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 1995, 14(1): 5-24.
  • 3Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 1991. 586-591.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 5Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 6Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500): 2268-2269.
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 8Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 9He X F, Yan S C, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-240.
  • 10Cai D, He X F, Han J W. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12): 1624-1637.

共引文献38

同被引文献13

  • 1张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 2KOBY C,MEHRYAR M,FEMANDO P.Gaussian margin machines[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics.Clearwater Beach Florida:Journal of Machine Learning Research,2009,5:105-112.
  • 3VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 4SCHOLKOPF B,SMOLA A,BARTLET P.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245.
  • 5SCHOLKOPF B,SMOLA A .Learning with kernels[M].Cambridge:MIT,2002.
  • 6TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
  • 7LIN C F,WAN S D.Fuzzy support vector machine[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 8SHIVASWAMY P K,JEBARA T.Maximum relative margin and data-dependent regularization[J].Journal of Machine Learning Research,2010,11(2):747-788.
  • 9WU Ming-rui,YE Jie-ping.A small sphere and large margin approach for novelty detection using training data with outliners[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092.
  • 10HAO P Y.A new fuzzy maximal-margin spherical-structured multi-class support vector machine[C]//Proceedings of the 2013 International Conference on Machine Learning and Cybernetics.Tianjin:Machine Learning and Cybernetics(ICMLC),2013,1:241-246.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部