期刊文献+

A NEW LIKELIHOOD-BASED MODULATION CLASSIFICATION ALGORITHM USING MCMC

A NEW LIKELIHOOD-BASED MODULATION CLASSIFICATION ALGORITHM USING MCMC
在线阅读 下载PDF
导出
摘要 In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset. In this paper, a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed. The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm, called the Adaptive Metropolis (AM) algorithm, to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function. Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain. Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset.
出处 《Journal of Electronics(China)》 2012年第1期17-22,共6页 电子科学学刊(英文版)
关键词 Modulation classification Markov Chain Monte Carlo (MCMC) Adaptive Metropolis(AM) Maximum Likelihood (ML) test 识别算法 调制分类 加性高斯白噪声 马尔可夫链 AWGN 调幅信号 MCMC 蒙特卡洛
  • 相关文献

参考文献12

  • 1O.A.Dobre,A.Abdi,Y.Bar-Ness,W.Su. Survey of automatic modulation classification techniques:classical approaches and new trends[J].IET Communications,2007,(02):137-156.
  • 2D.C.Popescu,O.A.Dobre,F.Hameed. On the likelihood-based approach to modulation classification[J].IEEE Transactions on Wireless Communications,2009,(12):5884-5892.
  • 3I.Kang,B.Shim. Joint modulation classification and detection using sphere decoding[J].Signal Processing,2009,(09):778-781.
  • 4A.Kubankova,D.Kubanek. Algorithms of digital modulation classification and their verification[J].WSEAS Transactions on Communications,2010,(09):563-572.
  • 5张路平,王建新.MQAM信号调制方式盲识别[J].电子与信息学报,2011,33(2):332-336. 被引量:28
  • 6A. Swami,B. Sadler. Hierarchical digital modulation classification using cumulants[J].IEEE Transactions on Communications,2000,(03):416-429.
  • 7程汉文,朱雷,吴乐南.基于累计量的干扰信号调制识别算法[J].电子与信息学报,2009,31(7):1741-1745. 被引量:24
  • 8S.Lesage,J.Y.Tourneret,P.M.Djuric. Classification of digital modulations by MCMC sampling[A].Salt Lake City,UT,USA,2001.2553-2556.
  • 9A.D.Thomas,D.Zhi. QAM constellation classification based on statistical sampling for linear distortive channels[J].IEEE Transactions on Signal Processing,2006,(05):1575-1586.
  • 10范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(9):1369-1371. 被引量:54

二级参考文献16

  • 1魏平.共信道重叠多信号的分离识别[J].通信对抗,2005(1):5-10. 被引量:6
  • 2冯祥,李建东.基于高阶循环累积量的SQAM信号调制识别算法[J].电子与信息学报,2007,29(1):125-128. 被引量:13
  • 3叶健,吴月娴,葛临东.基于高效自适应聚类算法的调制识别研究[J].计算机工程与设计,2007,28(3):506-508. 被引量:6
  • 4奚家熹,王宗欣.基于Hilbert变换的MQAM信号调制体制识别[J].通信学报,2007,28(6):1-6. 被引量:9
  • 5Dobre O A, Abdi A, and Bax-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun., 2007, 1(2): 137-156.
  • 6Kam-Tim W and Chi-Wah K. Clustering based distribution fitting algorithm for Automatic Modulation Recognition. IEEE Symposium on Computers and Communications, Aveiro, Portugal, 2007: 13-18.
  • 7Liu L K and Xu J D. A novel Modulation classification method based on high order cumulants. International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 2006: 1-5.
  • 8Liu Y and Zhang Z P. High order QAM signals recognition based on layered modulation. International Conference on Communications, Circuits and Systems, Milpitas, USA, 2009: 73-76.
  • 9Shi Q H, Gong Y, and Guan Y L. Asynchronous classification of high-order QAMs. IEEE Wireless Communications and Networking Conference, Las Vegas, USA, 2008:1188-1193.
  • 10Xu Z N and Bai W L. A novel blind recognition algorithm for modulated M-QAM signals. International conference on communications and mobile computing, Kunming, China, 2009:461-465.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部