期刊文献+

基于预分割轮廓的CT图像亚体素表面检测方法 被引量:8

Subvoxel-accuracy surface detection method based on contour pre-segmentation for computed tomography images
在线阅读 下载PDF
导出
摘要 针对基于CT(computed tomography)图像检测分析中的点云提取精度与完整性问题,提出一种基于预分割轮廓的高精度、高完整性的亚体素表面检测方法。首先采用Otsu分割算法提取CT图像的体素级轮廓点集,并以此作为粗定位轮廓自适应地生成用于亚体素表面检测的完备感兴趣区域(region of interest,ROI);然后提出一种基于梯度非极大值抑制的表面体素判定方法,避免了梯度阈值选择难题;最后基于3D Facet模型定位亚体素级表面点位置。实验结果表明,该方法能有效改善传统亚体素检测方法的轮廓丢失、伪边严重等问题,轮廓定位误差小于0.2个体素,同时能够取得3倍以上的计算加速比。 Aiming at the precision and integrity problems of point cloud extraction in the detecting applications based on computed tomography(CT) images, this paper proposes a pre-segmentation based subvoxel-accuracy surface de- tection method with fine integrity and high precision. Firstly, the Otsu segment algorithm is adopted to obtain the ini- tial sets of voxel-accuracy contour points for the CT image. With these sets as the coarse positioning contour, the complete region of interest(ROI) for subvoxel-accuracy surface detection is adaptively generated. Then, a surface voxel judging criterion is put forward based on non-maximum gradient suppression strategy, which avoids the gradient threshold selection dilemma. Finally, the positions of the subvoxel-accuracy surface points are determined based on 3D Facet model. Experiment results indicate that our method has a significant promotion in overcoming the contour loss and severe pseudo edges. The total positioning precision could be less than 0.2 voxels, and it could also obtain a computational speedup ratio above 3 compared with conventional methods.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第6期1308-1314,共7页 Chinese Journal of Scientific Instrument
基金 国家科技重大专项(2012ZX04007-021) 国家自然科学基金(51105315) 西北工业大学种子基金(Z2011080)资助项目
关键词 CT图像 表面检测 自适应感兴趣区域 3D FACET模型 亚体素精度 computed tomography (CT) image surface detection adaptive region of interest (ROI) 3D Facetmodel subvoxel-accuracy
  • 相关文献

参考文献15

二级参考文献97

共引文献160

同被引文献71

  • 1罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 2赵鹏,浦昭邦,张田文.基于动态轮廓线的图像面积测量研究[J].仪器仪表学报,2006,27(9):1150-1153. 被引量:5
  • 3闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 4林立宇,张友焱,孙涛,等.Contourlet变换:影像处理应用[M].北京:科学出版社,2008.
  • 5ISABELLE B. Duality vs. adjunction for fuzzy mathe- matical morphology and general form of fuzzy erosions and dilations[ J ]. Fuzzy Sets and Systems, 2009,160: 1558-1867.
  • 6ZHANG H,FRITI'S J E. Image segmentation evaluation: A survey of unsupervised methods [ J ]. Computer Vision and Image Understanding, 2008,110 (2) : 260-280.
  • 7HEIMANN T, GINNEKEN B, MARTIN A. Comparison and evaluation of methods for liver segmentation from CT datasets [ J ]. IEEE Transactions on Medical Imaging, 2009,28 ( 8 ) : 1251-1265.
  • 8LIN D T,LEI C C,HUNG S W. Computer-aided kidney seg- mentation on abdominal CT images [ J ]. IEEE Trans on In- formation Technology in Biomedicine ,2006,10 ( 1 ) :59-65.
  • 9SELVER M A, KOCAOGLU A, DEMIR G K. Patient ori- ented and robust automatic liver segmentation for pre-evaluation of liver transplantation [ J ]. Computers in Biology and Medicine ,2008,38 (7) :756-784.
  • 10GILHUIJS K G, VANDEVEN P J, VANHERH M. Automatic three dimensional inspection of patient setup in radiation therapy using portal images, simulator images, and computed tomography data[ J]. Med. Phys., 1996,23 (3) : 389-399.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部