期刊文献+

基于演化熵的一维二值元胞自动机行为度量 被引量:2

An Analysis for Dynamic Behavior of One-Dimension Two-Value Cellular Automata Based on Entropy Theory
在线阅读 下载PDF
导出
摘要 为实现计算机自动识别和搜索特定类型的一维二值元胞自动机,通过计算其演化熵,实现了对一维二值元胞自动机动力学行为描述的度量,并给出了演化熵平面类型域与其不同动力学行为之间的对应关系,最后结合演化熵分析了不同的Langton参数下一维二值元胞自动机动力学行为的分布情况,发现一维二值元胞自动机的Langton参数在刻画其动力学行为时与普适规律不符,而具有以参数0.5为中心的对称性。 In order to recognize and find the specialized one-dimension two-value cellular automata automatically,we realize the transition from the qualitative description to quantitive computation about the dynamic behaviors of cellular automata by computing the evolution entropy of cellular automata.The connection between the evolution entropy plan different yield and different dyna-mic behaviors is also presented.At last,the distribution of different dynamic behaviors distribution under the same Langton's parameter is analyzed using the evolution entropy.The results further show that the Langton parameter is symmetry when it is used to characterize the cellular automata dynamic behaviors that is not fit the generalized laws.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2012年第2期7-12,共6页 Complex Systems and Complexity Science
基金 国家自然科学基金(61040054) 高校基本科研基金(DC10020111)
关键词 元胞自动机 演化熵 Langton参数 动力学行为 cellular automata evolution entropy Langton's parameter dynamic behavior
  • 相关文献

参考文献15

  • 1周成虎 孙战利 谢一春.地理元胞自动机研究[M].北京:科学出版社,2001.34-38.
  • 2Melanie M. Computation in cellular automata:a selected review [EB/OL]. [2011 - 04 - 20]. http: //www. santafe, edu/ media/workingpapers/96 - 09 - 074. pdf. 1 - 41.
  • 3Guisado J, Jimenez F, Fernandez F. Cellular automata and cluster computing:an application to the simulation of la'ser dy- namics[J]. Advances in Complex System,2007,10(1) :167 - 190.
  • 4Christian D, Mario G,Marco T. Performance and roubustness of cellular automata computation on irregular networks[J]. Advances in Complex System, 2007,10 ( 1 ) : 85 - 110.
  • 5Wolfram S. Computation theory of cellular automata[J]. Communications in Mathematical Physics, 1984,96 (1) : 1 5 - 57.
  • 6Langton G. Computation at the edge of chaos., phase transitions and emergent computation[J]. Physica D, 1990,42 (1) :12 - 27.
  • 7曹兴芹,王能超.新型细胞自动机规则空间的参数化[J].计算机科学,2007,34(3):145-147. 被引量:4
  • 8朱留华,陈时东,孔令江,刘慕仁.基于卡诺图初等元胞自动机的演化规则[J].广西师范大学学报(自然科学版),2007,25(1):5-8. 被引量:2
  • 9肖帕尔,德罗兹.物理系统的元胞自动机模拟[M].祝玉学,赵学龙,译.北京:清华大学出版社,2003,16-18.
  • 10Culick K, Yu F. Undecidability of CA classification scheme[J]. Complex System, 1988,2 (1) : 177 - 190.

二级参考文献14

  • 1何云,陈若航,吕晓阳.一维DCA交通流模型分析[J].广西师范大学学报(自然科学版),1997,15(1):49-53. 被引量:11
  • 2李建会.人工生命:走向新的创世纪[J].二十一世纪(香港),2001,(2):78-82.
  • 3WOLFRAM S.Statistical mechanics of cellular automaton[J].Rev Mod Phy,1983,55(3):601-642.
  • 4MAERIVOET S,MOOR B D.Cellular automata model of road traffic[J].Physics Report,2005,419:9-12.
  • 5Wolfram S.A new kind of science.USA:Wolfram Media Inc,2002
  • 6Niloy G,Biplab K S,Andreas D,et al.A survey on cellular automata:]Technical report].Centre for High Performance Computing,Dresden University of Technology,2003.1~28
  • 7Langton C G.Computation at the edge of chaos:Phase transitions and emergent computation.Physica D,1990,42:12~37
  • 8Packard N H.Adaptation towards the edges of chaos.In:Kelso J A S,Mandell A J,Shlesinger M F,eds.Dynamic patterns in complex systems.Singapore:World Scientific,1988.293~301
  • 9Mitchell M,Hraber P T,Crutchfield J P.Revisiting the edges of chaos:Evolving cellular automata to perform computations.Complex Systems,1993,7(1):89~130
  • 10Li Wentian,Packard N H,Langton C G.Transition phenomena in cellular automate rule space.Physics D,1990,45:77~94

共引文献46

同被引文献32

  • 1宋英华,涂文豪,霍非舟,吕伟,方丹辉.考虑跨越障碍物行为的元胞自动机模型[J].中国安全科学学报,2020(4):74-79. 被引量:17
  • 2韩筱璞,周涛,汪秉宏.基于元胞自动机的国家演化模型研究[J].复杂系统与复杂性科学,2004,1(4):74-78. 被引量:12
  • 3周涛,周佩玲,汪秉宏,杨春霞,蔡世民.元胞自动机用于金融市场建模[J].复杂系统与复杂性科学,2005,2(4):10-15. 被引量:4
  • 4Helbing D, Farkas L, Vicsek T. Simulating dynamical features of escape Panic[J]. Nature, 2000, 407(28):487- 490.
  • 5Shields T J, Boyce K E, McConnell N. The behaviour and evacuation experiences of WTC 9/11 evacuees with self-designated mobility impair ments[J]. Fire Safety Journal, 2009, (44): 881 -893.
  • 6Eriea D K, Dennis S M. Modeling pre-evacuation delay by occupants in world trade center towers 1 and 2 on September 11, 2001[J]. Fire Safety Journal, 2009, (44): 487-496.
  • 7Huang H J, Guo R Y. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E, 2008,78(2): 021131.
  • 8Yuan W F, Tan K H. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A, 2007, (384) : 567 - 588.
  • 9Alizadeh R. A dynamic cellular automaton model for evacuation process with obstacles[J]. Safety Science, 2011, (49) : 315 - 323.
  • 10Zheng X P, Li W, Guan C. Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics[J]. Physica A, 2010(389): 2177-2188.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部