期刊文献+

基于Elman_AdaBoost强预测器的目标威胁评估模型及算法 被引量:30

The Model and Algorithm for the Target Threat Assessment Based on Elman_AdaBoost Strong Predictor
在线阅读 下载PDF
导出
摘要 目标威胁评估是协同目标攻击中的关键问题.为提高空战目标威胁评估的准确性和实用性,建立了E-lman_AdaBoost强预测器目标威胁评估模型及算法.首先,介绍了Elman_AdaBoost强预测器;其次,建立了Elman_Ad-aBoost强预测器目标威胁评估模型;最后,提出了基于Elman_AdaBoost强预测器目标威胁评估模型的算法.采集75组数据用于实验,其中60组作为训练集,15组作为测试集.分别选择Elman网络隐层节点数L=7,11,14,18和弱预测器数目K=6,10,16,20进行实验,结果表明,Elman_AdaBoost强预测器算法预测误差远小于弱预测器且在L=7和K=6时误差达到最小.Elman_AdaBoost强预测器目标威胁评估模型和算法具有很好的预测能力,可以快速、准确地完成作战目标威胁评估. Target threat assessment is the key issue in the collaborative multi-target attack. To improve the accuracy and use- fulness of target threat assessment in the aerial combat,a target threat assessment model and algorithm based on Elman_ AdaBoost strong predictor is proposed. Firstly, Elman_ AdaBoost strong predictor is introduced; secondly, a target threat assessment model based on Elman_ AdaBoost strong predictor is established; at last, an algorithm is described. There are 75 data sets culled for the simulation experiments,in which 60 sets are considered as training set,and the other 15 are testing sets. The number of hidden layer nodes of Elman network and weak predictors is selected L = 7,11,14,18 and K = 6,10,16,20 respectively for experiment and re- suits show that,the prediction error for Elman_ AdaBoost strong predictor algorithm is much smaller than the weak predictor and the error reaches the minimum when L = 7 and K = 6. The model and algorithm have good predictive ability, so it can quickly and ac- curately complete target threat assessment.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第5期901-906,共6页 Acta Electronica Sinica
基金 激光与物质相互作用国家重点实验室研究基金(No.SKLLIM0902-01)
关键词 目标威胁评估 模型 算法 Elman_AdaBoost target threat assessment model algorithm Elrnan_ adaptive boosting
  • 相关文献

参考文献17

  • 1杨健,高文逸,刘军.一种基于贝叶斯网络的威胁估计方法[J].解放军理工大学学报(自然科学版),2010,11(1):43-48. 被引量:22
  • 2周林.基于MADM的威胁评估排序模型.系统工程与电子技术,2001,23(1):18-18.
  • 3王晓帆,王宝树.基于直觉模糊与计划识别的威胁评估方法[J].计算机科学,2010,37(5):175-177. 被引量:11
  • 4Stover J A,Hallo D L, Gibson R E. A fuzzy-logic autonomous mulfisensory data fusion [ J ]. mEE Transactions on Industrial Electronics, 1996,43(3) :403 - 410.
  • 5Gonsalves P G, Gburge J E, Harper K A. Architecture for ge- netic algorithm-based threat assessment [ A ]. Proc. of the Sixth International Conference of Information Fusion [ C ]. Queens- land:International Society of Information Fusion (ISIF) ,2003. 965 - 971.
  • 6罗艳春,郭立红,姜晓莲,邵丽颖.基于模糊神经网络的空中目标威胁估计[J].微计算机信息,2007,23(34):268-270. 被引量:8
  • 7R E Schapire. A brief introduction to Boosting[ A]. Proceedings of the Sixth International Joint on Artificial Intelligence [ C ]. San Francisco: Morgan Kaufmann Publishers Inc., 1999. 1401 - 1406.
  • 8李凯,黄厚宽.一种提高神经网络集成差异性的学习方法[J].电子学报,2005,33(8):1387-1390. 被引量:9
  • 9Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosfng[ A]. COLT'95Proceexiings of the Second European Conference on Computa- tional Learning Theory[ C ]. Berlin: Springer-Verlag, 1995.23 - 37.
  • 10Y Freund,R E Schapire. Experiments with a new boosting al- gorithm,Machine Learning[ A] .Proceedings of the Thirteenth International Conference, Morgan Kauffman[ C ]. San Francis- co, 1996.148 - 156.

二级参考文献82

共引文献201

同被引文献279

引证文献30

二级引证文献288

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部