期刊文献+

基于轮廓层次和小波分析的工业字符识别 被引量:4

Industrial character recognition based on contour feature and wavelet analysis
在线阅读 下载PDF
导出
摘要 为了提高工业字符识别的准确率,增强字符识别算法对含噪声字符或发生形变字符的适应性,提出了一种改进的轮廓层次特征提取方法。对经过预处理归一化的字符,先提取轮廓层次特征,再对特征信号进行小波分解,从分解结果的低频部分中提取特征信息,最后将特征输入SVM(Support Vector Machines,支持向量机)训练和分类。实验结果表明,该特征提取方法降低了后续要处理的数据量,具有良好的抗干扰能力,实用价值较高。 In order to improve the accuracy of industrial character recognition and enhance the adaptability of our character recognition algorithm to noisy or deformed characters,a method of improved contour feature extraction is presented.First,contour features are extracted form the normalized characters,and then are decomposed by wavelet transform.Character features are extracted form the low-frequency part of the result of the decomposition.In the end,the SVM classifier is trained by sample characters and then is used to recognize test characters.Characters on industrial components are choosen as recognize objects.Experiments show that the presented method reduces the feature dimensions and improves the anti-interference ability of the features which have higher practical value.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第6期2423-2427,共5页 Computer Engineering and Design
基金 国家自然基金项目(60804013) "嵌入式机器视觉关键技术的研究与开发"产学研合作基金项目(011002)
关键词 字符识别 特征提取 轮廓层次 小波变换 支持向量机 character recognition feature extraction contour feature wavelet transform SVM
  • 相关文献

参考文献10

二级参考文献39

共引文献105

同被引文献43

  • 1曹吉超,孙帅.智能档案馆与数字档案馆辨析[J].办公自动化,2013,18(12):17-19. 被引量:1
  • 2李原,徐德,谭民.基于Hausdorff距离的工件焊缝接头类型识别[J].高技术通讯,2006,16(11):1129-1133. 被引量:4
  • 3GB/T3375-94焊接术语[S].北京:中国标准出版社,1994.
  • 4Nie Fangyan, Wang Yonglin, Pan Meisen, et al. Two-dimensional extension of variance-based thresholding for image segmentation [J]. Multidimensional Systems and Signal Processing, 2013, 24 (3) : 485-501.
  • 5Specht D. Probabilistic neural network[J]. Neural Networks, 1990,3(1) : 109-118.
  • 6Hinton G E, Osindero S, The Y. A fast learning algorithm for deep belief nets [J]. Neural Computation(S0899-7667), 2006, 18: 1527-1554.
  • 7V1NOD NAIR, GEOFFREY E HINTON. Rectified Linear Units Improve Restricted Boltzmann Machines [C]// Appearing in Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807-814.
  • 8MATTHEW D ZEILER, ROB FERGUS. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks [C]// International Conference on Learning Representations, Scottsdale, Arizona, USA, May 02-04, 2013:1301-1310.
  • 9Sukittanon S, Surendran A C, Platt J C, et al. Convolutional networks for speech detection [C]// Proceedings of the Eighth International Conference on Spoken Language Processing, Jeju Island: ISCA, 2001: 1077-1080.
  • 10Yin-Nong Chen, Chin-Chuan Han. A CNN-based face detector with a simple feature map and a coarse-to-fine classifier [J]. Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2009, 31(3): 1-12.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部