期刊文献+

基于动态贝叶斯网络的战斗目标综合推理识别 被引量:2

Fusion Inference Identification of Combat Targets Based on Dynamic Bayesian Network
在线阅读 下载PDF
导出
摘要 针对空战战场环境下的目标可靠识别,提出了基于动态贝叶斯网络的战斗目标综合推理识别方法。分析了目标属性的多层次及状态变量关系,提出了层次化的战斗识别动态贝叶斯网络拓扑结构及其参数设定方法,并运用时间片联合树算法进行不确定性动态推理,实现动态的目标属性判断与识别。仿真结果给出了目标的多层次属性信息,验证了模型的有效性。 To realize reliability identification of targets in air battlefield, integrated inference for combat target identification is proposed based on dynamic Bayesian network(DBN). Combat targets' attribute variable and its states are analysed, a hierarchy DBN is built for combat identification, then the way of obtaining network param- eters is discussed. Uncertain dynamic reasoning is made based on Joint Tree algorithm of time slice and decision of targets' attribute is made dynamically. Simulation study gives targets' multi- hierarchy attribute and shows that the proposed method is effective.
出处 《电讯技术》 北大核心 2012年第6期893-897,共5页 Telecommunication Engineering
关键词 目标综合识别 动态贝叶斯网络 不确定推理 时间片联合树算法 target fusion identification dynamic Bayesian network uncertain reasoning joint tree algorithm of time slice
  • 相关文献

参考文献7

  • 1南建设.目标综合识别系统研究[J].电讯技术,2007,47(5):74-77. 被引量:9
  • 2Murphy K P. Dynamic Bayesian networks:Representation,inference and learning[D].Berkeley,CA,USA:UC Berkeley,2002.
  • 3Doucet A,de Freitas N,Murphy K. Rao-blackwellised particle filtering for dynamicBayesian networks[A].San Francisco,CA:IEEE,2000.176-183.
  • 4史建国;高晓光.动态贝叶斯网络及其在自主智能作战中的应用[M]北京:兵器工业出版社,2008.
  • 5Schuck T,Hunter B,Daniel D. Multi-Hypothesis Structures and Taxonomies for Combat Identification Fusion[A].Copenhagen,Denmark:Lockheed Martin Maritime and Systems and Sensors,2004.1-17.doi:10.1097/TA.0b013e3181acbe75.
  • 6TANG Zheng,GAO Xiao-guang,ZHANG Ying. Overview of research onassessment model of radiant threat rank based on dynamic Bayesian network[A].Jinan:IEEE,2007.1067-1071.doi:10.1130/G30816.1.
  • 7厉海涛,金光,周经伦,周忠宝,李大庆.贝叶斯网络推理算法综述[J].系统工程与电子技术,2008,30(5):935-939. 被引量:56

二级参考文献43

  • 1南建设.信号细微特征分析技术研究[J].电讯技术,2007,47(2):68-71. 被引量:10
  • 2Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178.
  • 3Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219.
  • 4Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131.
  • 5Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328.
  • 6Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905.
  • 7Shachter R. Evidence absorption and propagation through evidence reversals [J]. Uncertainty in Artificial Intelligence, 1990(5): 173 - 190.
  • 8Adrian Y W C, Boutilier C. Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks[C].Proceedings of the Thirteenth ConJerence on Uncertainty in AI (UAI-97), 1997.
  • 9Darwiche A. A differential approach to inference in Bayesian networks (Tech. Rep. Nos. D-108)[R]. Los Angeles: Computer Science Department, UCLA, 1999.
  • 10Darwiche A. A differential approach to inference in Bayesian networks[C].Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference, San Francisco:Morgan Kaufmann, 2000.

共引文献63

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部