期刊文献+

数字图像乘性与加性水印算法比较研究 被引量:1

Comparison Study of Multiplicative Algorithm and Additive Algorithm for Digital Image Watermarking
在线阅读 下载PDF
导出
摘要 本文利用数字图像离散余弦变换系数的广义高斯分布模型,在图像嵌入水印后峰值信噪比(peak signal to noise ratio,PSNR)一致的条件下,以检测概率为衡量指标,理论分析了数字图像加性和乘性算法在未受到攻击时的性能,乘性算法的性能随形状参数的变大而提高,而加性算法的相关检测器性能与形状参数无关。攻击实验分析表明,除了抗滤波攻击性能较差外,加性算法在其他攻击下表现出较强的鲁棒性。 This paper utilizes the generalized Gaussian distribution to model the discrete cosine transform (DCT) coefficients of image. With the same peak signal to noise ratio (PSNR) of watermarked images, the unattacked performances of both multiplicative algorithm and additive algorithm are theoretically ana- lyzed. It is shown that the detection probability of the multiplicative algorithm increases upon the shape parameter of the generalized Gaussian distribution, while the performance of the linear correlation detector for the additive algorithm is irrelevant to this distributed parameter. Besides the attack of filtering, the attacked experiments show that the additive algorithm is preferable to the multiplicative algorithm.
出处 《青岛大学学报(工程技术版)》 CAS 2012年第2期6-10,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 山东省自然科学基金项目资助(ZR2010FM006)
关键词 数字水印 广义高斯分布 峰值信噪比 检测概率 digital watermarking generalized Gaussian distribution peak signal to noise ratio detectionprobability
  • 相关文献

参考文献10

二级参考文献52

  • 1孙中伟,朱岩,冯登国.DCT域图像水印的局部优化检测性能研究[J].电子学报,2005,33(5):864-867. 被引量:11
  • 2孙中伟,冯登国.DCT变换域乘嵌入图像水印的检测算法[J].软件学报,2005,16(10):1798-1804. 被引量:15
  • 3付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 4[1]Joshi R J,Fischer T R.Comparison of generalized Gaussian and laplacian modeling in DCT image coding[J].IEEE Trans.on signal processing letters,1995,2(5):81-82.
  • 5[2]Do M N,Vetteli M.Wavelet based texture retrieval using generalized Gaussian density and Kullback leibler distance[J].IEEE Trans.on image processing,2002,11(2):146-158.
  • 6[3]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.on Pattern Recognit Machine Intell,1989,11(7):674-693.
  • 7[4]Walden A T,Hosken J W J.The nature of the nonGaussianity of primary reflection coefficients and its significance for deconvolution[A].The 47th meeting of the EAEG,Budapest,1985.1038-1066.
  • 8[5]Cao J,Murara N.A stable and robust ICA algorithm based on T-distribution and generalized Gaussian distribution on model[A].Neural Networks for Signal Processing[C].New York:IEEE Press,1999,283-292.
  • 9[6]Stacy E W.A generalization of gamma distribution[J].Ann Math Stat,1962,28(3):1187-1192.
  • 10[7]James H M,John B T.Detectors for discrete-time signals in non-Gaussian noise[J].IEEE Trans on information Theory,1972,18(2):241-250.

共引文献63

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部