期刊文献+

一类具有脉冲作用和Holling Ⅱ型功能性反应的非自治捕食者-食饵系统正周期解的存在性 被引量:2

Existence of Positive Periodic Solutions for a Nonautonomous Predator-Prey System with Impulses Effect and Holling Type-Ⅱ Functional Response
在线阅读 下载PDF
导出
摘要 通过应用迭合度理论的连续定理,给出了一类具有脉冲作用和Holling Ⅱ型功能性反应的非自治捕食者-食饵系统正周期解的存在性的充分条件. By using continuation theorem of coincidence degree theory, the sufficient condition of the existence of positive periodic solutions for a Nonautonomous predator - prey system with impulses effect and Holling type -Ⅱ functional response is obtained.
作者 王斌 朱勇
出处 《云南民族大学学报(自然科学版)》 CAS 2012年第4期280-285,共6页 Journal of Yunnan Minzu University:Natural Sciences Edition
关键词 脉冲 HOLLING Ⅱ型功能性反应 捕食者-食饵系统 正周期解 迭合度理论 impulses Holling type -Ⅱ functional response predator - prey system positive periodic solutions coincidence degree theory
  • 相关文献

参考文献16

  • 1范猛,王克.一类具有Holling Ⅱ型功能性反应的捕食者-食饵系统全局周期解的存在性[J].数学物理学报(A辑),2001,21(4):492-497. 被引量:58
  • 2叶丹,范猛,张伟鹏.一类具Holling Ⅱ型功能性反应的捕食者-食饵系统非平凡周期解的存在性[J].工程数学学报,2004,21(4):504-508. 被引量:18
  • 3金上海.具有时滞的捕食者——食饵模型正周期解的存在性[J].绍兴文理学院学报,2009,29(7):16-19. 被引量:3
  • 4LIU Xian-ning,CHEN Lan-sun. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J].Chaos,Solitons and Fractals,2003,(02):311-320.
  • 5ZHANG Shu-wen,TAN De-jun,CHEN Lan-sun. Chaos in periodically forced Holling type Ⅱ predator-prey system with impulsive perturbations[J].Chaos,Solitons and Fractals,2006,(02):367-376.
  • 6JIANG Gui-rong,LU Qi-shao,QIAN Lin-ning. Complex dynamics of a Holling type Ⅱ prey-predator system with state feedbackcontrol[J].Chaos,Solitons and Fractals,2007,(02):448-461.
  • 7CHEN Liu-juan,CHEN Feng-de,CHEN Li-juan. Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge[J].Nonlinear Analysis:Real World Applications,2010,(01):246-252.
  • 8NIE Lin-fei,TENG Zhi-dong,HU Lin,PENG Ji-gen. Qualitative analysis of a modified Leslie-Cower and Holling type Ⅱ predator-prey model with state dependent impulsive effects[J].Nonlinear Analysis:Real World Applications,2010,(03):1364-1373.
  • 9LIU Zi-jian,ZHONG Shou-ming. Permanence and extinction analysis for a delayed periodic predator-prey system with Holling type Ⅱ response function and diffusion[J].Applied Mathematics and Computation,2010,(10):3002-3015.
  • 10SHEN Jian-hua,LI Jian-li. Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays[J].Nonlinear Analysis:Real World Applications,2009,(01):227-243.doi:10.1016/j.nonrwa.2007.08.026.

二级参考文献28

  • 1陈凤德,陈晓星,张惠英.捕食者具有阶段结构Holling Ⅱ类功能性反应的捕食模型正周期解的存在性以及全局吸引性[J].数学物理学报(A辑),2006,26(1):93-103. 被引量:29
  • 2韦煜明,曾琬婷,丁昌明.一类被开发的捕食-食饵系统的定性分析[J].广西师范大学学报(自然科学版),2006,24(3):30-33. 被引量:5
  • 3陈兰荪 井竹君.捕食者-食饵相互作用微分方程的极限环存在性和唯一性[J].科学通报,1984,24(9):521-523.
  • 4WANG Lin-lin,LI Wan-tong.Existence and global stability of positive periodic solutions of a predator-prey system with delays[J].Applied Mathematics and Computation,2003,146 (1):167-185.
  • 5WANG Kai.Existence and global asymptotic stability of positive periodic solution for a predator-prey system with mutual interference[J].Nonlinear Anal.Real World Appl,2009,10(5):2774-2783.
  • 6SHEN Jian-hua,LI Jian-li.Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays[J].Nonlinear Anal.Real World Appl,2009,10(1):227-243.
  • 7NIE Lin-fei,TENG Zhi-dong,LIN Hu,PENG Ji-gen.Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects[J].Mathematics and Computers in Simulation,2009,79(7):2122-2134.
  • 8LIU Xiang-sen,LI Gang,LUO Gui-lie.Positive periodic solution for a two-species ratio-dependent predator-prey system with time delay and impulse[J].J Math Anal Appl,2007,35(1):715-723.
  • 9LAKSHMIKANTHAM V,BAINOV D D,SIMEONOV P S.Theory of impulsive differential equations[M].Singapore:World Scientific,1989.
  • 10BAINOV D,SIMEONOV P.Impulsive differential equations:periodic solutions and applications[M].New York:Longman Scientific and Technical,1993.

共引文献72

同被引文献32

  • 1LIU Gui-rong, YAN Ju-rang. Positive Periodic Solutions for a Neutral Delay Ratio-Dependent Predator-Prey Model with a Holling Type II Functional Response [J]. Nonlinear Anal RWA, 2011, 12(6) : 3252--3260.
  • 2ZHU Yan-ling, WANG Kai. Existence and Global Attractivity of Positive Periodic Solutions for a Predator-Prey Model with Modified Leslie-Gower Holling-Type II Schemes [J]. J Math Anal Appl, 2011, 384(2) : 400--408.
  • 3HILGER S. Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus [J]. Results Math, 1990, 18 18--56.
  • 4LAKSHMIKANTHAM V, SIVASUNDARAM S, KAYMAKCALAN B. Dynamic Systems on Measure Chains [M]. Boston: Kluwer Academic, 1996.
  • 5AGARWAL R P, BOHNER M. Basic Calculus on Time Scales and Some of Its Applications [J]. Results Math, 1999, 35: 3--22.
  • 6BOHNER M, PETERSON A. Advances in Dynamic Equations on Time Scales [M]. Boston: Birkhauser, 2003.
  • 7BOHNER M, PETERSON A. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhauser, 2001.
  • 8SEQUEIRA R, DIXON AF G. Population Dynamics of Tree-dwelling Aphids: the Importance of Seasonality and Time Scale [J]. Ecology, 1997, 78(8): 2603--2610.
  • 9ZHANG Ji-min, FAN Meng, ZHU Huai-ping. Periodic Solution of Single Population Models on Time Scales [J]. Math Comp Model, 2010, 52(3): 515--521.
  • 10ZENG Zhi-jun. Periodic Solutions for A Delayed Predator-Prey System with Stage-Structured Predator on Time Scales [J]. Comput MathAppl, 2011, 61(11): 3298--3311.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部