期刊文献+

基于自适应动态碰撞检测的工业机器人运动规划算法研究 被引量:10

A novel motion planning algorithm with adaptive dynamic collision detection for industrial robots
在线阅读 下载PDF
导出
摘要 提出了一种基于PRM(probabilistic roadmaps)算法思想的新型工业机器人运动规划算法.将PRM规划算法由全部C空间计算优化为大部分在欧氏空间、小部分在C空间的计算模式,大幅减少了计算量;使用优化空间分割方法提高采样效率;采用凸优化方法解决了机器人静止姿态碰撞检测问题,并结合自适应动态碰撞检测算法,实现在不降低计算精度的前提下,提高运算速度,使规划结果具有完备性. A PRM (probabilistic roadmaps) based novel motion planning algorithm was proposed for industrial robots. It could significantly reduce computational efforts by carrying out robot path calculation in both Cartesian space and configuration space. This algorithm was embedded with a fast space partition method to improve sampling efficiency. Since both the robot and obstacles were modeled as cuboids, the static collision detection was formulated as a convex optimization problem. By applying the adaptive dynamic collision detection method, the motion planning problem was solved efficiently and completely without loss of computation precision.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第6期448-455,共8页 JUSTC
基金 国家自然科学基金(51075085) 国家高技术研究发展专项经费(2011AA04A103)资助
关键词 工业机器人 运动规划 空间分割 碰撞检测 industrial robots motion planning space partition collision detection
  • 相关文献

参考文献12

  • 1Varadhan G, Manocha D. Stashaped roadmaps: A deterministic sampling approach for complete motion planning[C]// Thrun S, Sukhatme G S, Schaal S. Robotics: Science and Systems I. Cambridge, Massachusetts: The M1T Press, 2005: 25-32.
  • 2Sleumer N H, Tschichold-Girman N. Exact cell decomposition of arrangements used for path planning in robotics[R]. Zurich, Switzerland: Swiss Federal Institute of Technology, 1999.
  • 3Choset H, of robot Lynch K, Hutchinson S, et al. Principles motion: Theory, algorithms, and implementations[J]. IEEE Robotics &. Automation Magazine, 2005, 12(3).. 110.
  • 4Latombe J. Robot Motion Planning[M]. Dordrecht,Netherland: Kluwer Academic Publishers, 1991.
  • 5Arney T. An efficient solution to autonomous path planning by approximate cell decomposition [C]// Third International Conference on Information and Automation for Sustainability (ICIAFS 2007). IEEE, 2007, 12(4-6): 88-93.
  • 6Kavraki L E, SvestKa P, Latombe J C, et ai. Probabilistic roadmaps for path planning in high- dimensional configuration spaces[J]. IEEE Trans on Robotics and Automation, 1994, 12(4): 566-580.
  • 7Horsch Th, Schwarz F, Tolle H. Motion planning with many degrees of freedom random reflections at C- Space obstacles [C]// 1994 IEEE International Conference on Robotics and Automation. IEEE, 1994, 4:3 318-3 323.
  • 8Perez T L. Spatial planning.. A configuration spaceapproach[J]. IEEE Trans on Computers, 1983, C 32(2) : 108-120.
  • 9Murray R M, Lee Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation [M]. Boca Rotan,FL: CRC Press. 2005.. 97 135.
  • 10Boyd S, Vandenberghe L. Convex Optimizatio [M]. Cambridge Cambridge University Press, 2004.. 561 623.

同被引文献124

引证文献10

二级引证文献676

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部