期刊文献+

基于SL0压缩感知信号重建的改进算法 被引量:14

The Improved Reconstruction Algorithm for Compressive Sensing on SL0
在线阅读 下载PDF
导出
摘要 SL0算法是一种基于近似L0范数的压缩感知信号重建算法,它采用最速下降法和梯度投影原理,逐步逼近最优解,具有匹配度高、重建时间短、计算量低、不需要信号的稀疏度这个先验条件等优点。但是,它的迭代方向为负梯度方向,存在"锯齿效应",并且SL0算法及其改进算法(NSL0)中的连续函数"陡峭性"不大,使近似L0范数的估计不精确、收敛速度慢。本文采用"陡峭性"大的近似双曲正切函数,结合修正牛顿法和阻尼牛顿法,提出一种更快速高效的信号重建算法(ANSL0)。数值计算结果表明,在相同的条件下,相比SL0和NSL0算法,ANSL0算法在匹配度、峰值信噪比和信噪比方面都有了较大提高。 Smoothed l0 norm algorithm(SL0) is a reconstruction algorithm in compressive sensing based on approximate l0 norm.It approches the solution using the specific iteration process with the steepest desent method and gradient projection principle.It has many advantages,such as the high matching degree,the short reconstruction time,the low computation complexity,and no need for the sparsity of a signal.However,it has "notched effect" due to the negative iterative gradient direction.Moreover,the property of continuous function in SL0 and its improved algorithm(NSL0) is not steep enough,which results in the estimations are not accurate and the convergence is slow.In this paper,we use hyperbolic tangent function as the approximation to the big "steep nature" in l0 norm.Based on it,we propose a novel reconstruction algorithm named ANSL0 with the Damped Newton method and the Revised Newton method.The numerical simulation results show that the ANSL0 algorithm has great improvement in both matching degree,the peak value signal-to-noise ratio and the signal-to-noise ratio,comparing with the SL0 algorithm and NSL0 algorithm under the same conditions.
机构地区 南京邮电大学
出处 《信号处理》 CSCD 北大核心 2012年第6期834-841,共8页 Journal of Signal Processing
基金 江苏省高校自然科学研究重大项目(11KJA510002) 南京邮电大学“宽带无线通信与传感网技术”教育部重点实验室开放研究基金(ZD035001NYKL01) 留学人员科技活动项目(NJ210002)
关键词 压缩感知 重建算法 光滑L0范数 修正牛顿法 阻尼牛顿法 compressive sensing reconstruction algorithm smoothed l0 norm revised Newton method damped Newton method
  • 相关文献

参考文献24

  • 1E. Cand6s. Compressive sampling[ A]. Proceedings of in- ternational congress of mathematicians. Zurich, Switzer- land: European Mathematical Society Publishing House, 2006,1433-1452.
  • 2R. Baraniuk. Compressive sensing[J]. IEEE Signal Pro- cessing Magzine ,2007,24(4) : 118-121.
  • 3ZHAO RuiZhen,LIU XiaoYu,Ching-Chung LI,Robert J. SCLABASSI,& SUN MinGui.Wavelet denoising via sparse representation[J].Science in China(Series F),2009,52(8):1371-1377. 被引量:26
  • 4E. Cands, J. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Com- munications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207-1223.
  • 5V. Goyal, A. Fletcher, and S. Rangan. Compressive sam- piing and lossy compression [ J ]. IEEE Signal Process Magzine, 2008,25 ( 2 ) : 48 -56.
  • 6M. Lustig, D. Donoho, and J. Partly. Sparse MRI: the ap- plication of compressed sensing for rapid MR imaging[ J 3. Magnetic Resonance in Medicine ,2007,58 : 1182-1195.
  • 7W. Bajwa, J. Haupt, A. Sayeed, et al. Compressive wire- less sensing [ A ]. Proceedings of the 5th International Conference on Information Processing in Sensor Networks. New York : Association for Computing Machinery, 2006,134-142.
  • 8郭海燕,杨震.基于近似KLT域的语音信号压缩感知[J].电子与信息学报,2009,31(12):2948-2952. 被引量:32
  • 9B. Thomas, E. D. Mike. Gradient Pursuits [ J ]. IEEE Trans. on Signal Processing. 2008,56 (6) : 2370-2382.
  • 10W. Dai and O. Milenkovic. Subspace pursuit for compres- sive sensing signal reconstruction [ J ]. IEEE Trans. Inf. Theory. 2009,55 (5) :2230-2249.

二级参考文献21

  • 1Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Tsaig Y and Donoho D. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 533-548.
  • 3Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Romberg J. Imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
  • 5Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K,and Baraniuk R. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 6Gemmeke J F and Cranen B. Using sparse representations for missing data imputation in noise robust speech recognition. European Signal Processing Conf. (EUSIPCO), Lausanne, Switzerland, August 2008: 987-991.
  • 7Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 8Baron D, Wakin M, Duarte M, Sarvotham S, and Baraniuk R Distributed compressed sensing. Technical Report ECE-0612, Electrical and Computer Engineering Department, Rice University, December 2006.
  • 9Chen S S, Donoho D L, and Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129-159.
  • 10A.帕普里斯,S·U·佩莱著,保铮,冯大政,水鹏朗译.概率、随机变量与随机过程.第4版,西安:西安交通大学出版社,2004:209-213.

共引文献56

同被引文献125

  • 1周浩,文必洋,吴世才,刘晓峰.应用时频分析进行高频雷达射频干扰抑制[J].电子学报,2004,32(9):1546-1548. 被引量:9
  • 2科恩.时-频分析:理论与应用[M].西安:西安交通大学出版,1998.77-111.
  • 3John Wright, Allen Yang, Arvind Ganesh and S. Shankar Sastry. Robust Face recognition via Sparse Representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009,31 : 210-227.
  • 4M. Turk and A. Pentland. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991, 3 ( 1 ) :71- 86.
  • 5K. Etemad and R. Chellappa. Discriminant analysis for recognition of human face images I J]. J. Opt. Soc. Am. A, 1997, 14(8): 1724-1733.
  • 6M. Bartlett, J. Movellan, and T. Sejnowski. Face recog- nition by independentcomponent analysis[J~. IEEE Trans- actions on Neural Networks, 2002, 13 (6) : 1450-1464.
  • 7Shen L L and Bai L. A review on Gabor wavelets for face recognition [ J]. Pattern Analysis and Application, 2006, 9(2) :273-292.
  • 8Amin M A and Yan H. An empirical study on the charac- teristics of Gabor representations for face recognition[ J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23 (3) : 401-431.
  • 9M. Yang and L. Zhang, Gabor Feature based Sparse Rep- resentation for Face Recognition with Gabor Occlusion Dic- tionaryE C ]. in ECCV, 2010.
  • 10Dror Baron, Marco F. Duarte. Distribu'ted Compressivq Sensing[ C]. Proceedings of the Sensor, Signal and Infor mation Processing (SenSIP) Workshop, 2008.

引证文献14

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部