期刊文献+

基于云计算的生物DNA指纹图谱大范围比对方法 被引量:1

Based on Cloud Computing Biological DNA Fingerprint Big Range Comparison Method
在线阅读 下载PDF
导出
摘要 针对DNA特征比对过程中,产生的生物DNA特征图谱特征较为复杂,生物特征极为琐碎,海量生物DNA特征的对比,依然是一项十分复杂的工作。传统算法多是基于单个DAN特征进行车轮式对比。一旦生物特征过于繁琐,造成比对匹配耗时,效率较低。本文提出了一种基于云计算的生物DNA特征海量数据对比技术。建立云计算网络模型,计算生物DNA泳道特征系数,将DNA限制性片断形成的谱带从背景中分离出来,完成海量DNA数据对比。实验证明,这种算法能够避免由于DNA图谱数量过大造成的匹配耗时缺点,提高了生物DNA指纹图谱大范围比对的效率。 According to characteristics of DNA than process, produce the biological characteristics of DNA spectroscopic characteristics is relatively complex, biological characteristics extremely trivial, mass personnel DNA features contrast, still is a very complicated work. More than traditional algorithm is based on a single DAN characteristics of the contrast. Once the biological features too trival, cause than matching, time-consuming, and low efficiency. Put forward based on the biological characteristics of cloud computing DNA mass data contrast technology. Establish cloud computing network model, the calculation of biological characteristics of DNA lane coefficient, DNA fragments of the form will be restricted spectrum from the background with isolated, complete mass DNA data contrast. Experiments show that the algorithm can avoid the DNA fingerprint caused by the excessive number of matching time-consuming faults, improve the biological DNA fingerprint big range than efficiency
作者 张文静
出处 《科技通报》 北大核心 2012年第6期92-95,共4页 Bulletin of Science and Technology
基金 国家自然科学基金项目(61170144)
关键词 云计算 DNA图谱 特征匹配 cloud computing DNA fingerprint feature matching
  • 相关文献

参考文献5

二级参考文献52

  • 1朱长征,沈振康.一种改进的完全搜索块匹配算法[J].红外与激光工程,2004,33(4):388-391. 被引量:12
  • 2李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 3张培珍,江华俊,沈玉利.自适应块匹配搜索算法研究[J].计算机应用,2006,26(4):797-798. 被引量:3
  • 4Brown L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4): 326-376.
  • 5Heipke C. Overview of image matching techniques [C]//Proc of OEEPE Workshop on the Application of Digital Photogrammetric Workstations. Frankfurt: OEEPE Official Publications, 1996:173-189.
  • 6Zitova B, Flusser J. Image registration methods: A survey [J]. Image and Vision Computing, 2003, 21(11): 977-1000.
  • 7Hanaizumi H, Fujimura S. An automated method for registration of satellite remote sensing images [C] //Proc of IGARSS'93. Piscataway, NJ: IEEE, 1993:1348-1350.
  • 8Berthilsson R. Affine correlation [C]//Proc of ICPR'98. Los Alamitos, CA: IEEE Computer Soeiety, 1998:1458-1460.
  • 9Zhang Z, Deriehe R, Faugeras O, et al, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [J]. Artificial Intelligence Journal, 1995, 78(1-2): 87-119.
  • 10Pilu M. A direct method for stereo correspondence based on singular value decomposition [C] //Proc of CVPR'97. Los Alamitos, CA: IEEE Computer Society, 1997:261-266.

共引文献56

同被引文献6

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:100
  • 2J Dean and S Ghemawat. Mapreduce: Simplified data pro- cessing on large clusters[C]//. OSDI'04, 2004.
  • 3H Karloff, S Suri and S Vassilvitskii. A model of computa- tion for mapreduce [C]//. Symposium on Discrete Algo- rithms(SODA), 2010.
  • 4WangY, Wang ZO. A Fast KNN Algorithm for Text Cate- gorization [C]//. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics. 2007: 3436-3441.
  • 5Imad R, William P. An Optimized Approach for KNN Text Categorization Using P-Trees [C]//. In SAC. 2004: 613-617.
  • 6李湘东,徐朋,黄莉,沈祥兴.基于KNN算法的文本自动分类方法研究——以学术期刊栏目自动归类为例[J].图书情报知识,2010,27(4):71-76. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部