摘要
提高计算精度和运算效率是所有波场正演方法所追求的目标,本文通过将速度 (应力)对时间的奇数阶高阶寻数转化为应力(速度)对空间的导数,运用时间和空间差分精度 均可达任意阶的高阶差分法,通过交错网格技术,对一阶速度-应力弹性波方程进行了数值求 解.波场快照以及实际模型的正演结果表明,这种求解一阶弹性波方程的高阶差分解法,和 常规的差分法相比网格频散显著减小,精度明显提高,而且可以取较大的空间步长,提高计算 效率。
All methods of seismic wave-field simulation are trying to improve their computational accuracy and efficiency. After transforming the odd higher-order time derivatives of velocity (stress) to spatial derivatives of stress (velocity) in the high-order finite difference method, we can use any order of the temporal and spatial difference accuracy and staggered-grid technique for numerical calculation of the one-order elastic wave equations expressed with velocity and stress. The snapshots and simulated results of an actual model show that this method is more accurate and can decrease the grid dispersion in conventional difference method. Meanwhile, bigger grid space can be used in order to raise the computational efficiency.
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2000年第3期411-419,共9页
Chinese Journal of Geophysics
基金
教育部重点科技基金项目和海洋 863-820主题青年基金项目
关键词
弹性波方程
交错网格
高阶差分解法
地震勘探
Elastic wave equation, TI media, High-order finite difference, Staggered-grid, Absorbing boundary conditions, Stability.