期刊文献+

基于神经网络规则抽取的产品服务配置规则获取 被引量:5

Product Service Configuration Rules Acquisition Based on Rule Extraction from Neural Networks
原文传递
导出
摘要 针对由混合配置前件导致的大量耦合的、相互关联的复杂规则,提出了LC神经网络和RULEX算法联合实施下基于历史数据的个性化产品服务配置规则获取方法,包括基于LC的规则构造和知识发现,基于RULEX的规则抽取,网络模块的划分与提炼,以及配置规则适应度评价。最终通过楼宇控制产品服务说明了该方法具有较好的网络训练效率和规则复杂度。 To deal with a large number of coupled,connected complex rules caused by mixed antecedents,acquisition methods for personalized product service configuration rules based on LC neural network and RULEX algorithm is proposed in this paper. First, rule knowledge is discovered by LC from historical data, then extracted by RULEX. Network module partition and analysis of rules fitness are also presented. Finally, the proposed method is validated by services of building control product.
出处 《工业工程与管理》 CSSCI 北大核心 2012年第3期66-73,共8页 Industrial Engineering and Management
基金 国家自然科学基金重点项目(70932004/G0209)
关键词 产品服务 配置规则 神经网络规则抽取 LC RULEX product service configuration rules rule extraction from neural networks LC RULEX
  • 相关文献

参考文献9

  • 1Sabin D,Weigel R. Product configuration frameworks: A survey [J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4) : 42-49.
  • 2耿秀丽,张在房,褚学宁.基于变精度粗糙集的产品配置规则提取及增量式更新[J].上海交通大学学报,2010,44(7):878-882. 被引量:6
  • 3Agard B, Kusiak A. Standardization of components, products and processes with data mining[C]. International Conference on Production Research Americas. Santiago, Chile: Citeseer, 2004.
  • 4Jiao J, Zhang Y. Product portfolio identification based on association rule mining[J]. Computer-Aided Design, 2005, 37(2):149-172.
  • 5Shao X Y,Wang Z H, Li P G, et al. , Integrating data mining and rough set for customer group-based discovery of product configuration rules [J]. International Journal of Produetion Research, 2006,44(14): 2789-2811.
  • 6Fung R, Tang J, Tu Y, et al. Product design resources optimization using a non-linear fuzzy quality function deployment model [J]. International Journal of Production Research, 2002,40 (3): 585-599.
  • 7Chen Z,Wang L. Personalized product configuration rules with dual formulations: A method to proactively leverage mass confusion[J]. Expert Systems with Applications, 2010, 37 ( 1 ) : 383-392.
  • 8GevaS, Malmstrom K, Sitte J. Local cluster neural net: Architecture, training and applications[J]. Neurocomputing, 1998,20(1-3) :35-56.
  • 9Andrews R,Geva S. Rule extraction from local cluster neural nets[J]. Neuroeomputing, 2002,47 (1-4) : 1-20.

二级参考文献13

  • 1张保威,李明.基于Rough Set的属性值约简算法研究[J].计算机工程与设计,2006,27(13):2324-2326. 被引量:2
  • 2周杰,王加阳,罗安.变精度粗糙集模型约简层次研究[J].计算机工程与应用,2007,43(12):173-176. 被引量:6
  • 3高天一,孙伟,马沁怡.基于粗集理论的产品配置规则获取方法研究[J].计算机工程与应用,2007,43(16):20-21. 被引量:4
  • 4Shao X, Wang Z, Li P, et al. Integrating data mining and rough set for customer group-based discovery of product configuration rules [J]. International Journal of Production Research, 2006, 44 (14) : 2789- 2811.
  • 5Zhu B, Jiang P. An approach to configuring product family using rough set theory [J]. International Journal of Product Development, 2005, 2 ( 1 ) : 155-169.
  • 6Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46(1) : 39-59.
  • 7MiJ S, Wu W Z, Zhang W X. Approaches to knowledge reduction based on variable precision rough set model [J]. Information Sciences, 2004,159 : 255-272.
  • 8Blaszczynski J, Slowinski R. Incremental induction of decision rules from dominance-based rough approximations [J]. Electronic Notes in Theoretical Computer Science, 2003, 82(4) :1-12.
  • 9Fan Y N, Tseng T L, Chern C C, etal. Rule induction based on an incremental rough set [J].Expert Systems with Applications,2009,36(9) :11439-11450.
  • 10An A, Shan N, Chan C, et al. Discovering rules for water demand prediction: an enhanced rough-set approaeh[J]. Engineering Application in Artificial Intelligence, 1996,9(6) : 645-653.

共引文献5

同被引文献76

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部