期刊文献+

超定情况下的基于稀疏成分分析的盲图像源分离

Over-determined Blind Image Source Separation Based On Sparse Component Analysis
在线阅读 下载PDF
导出
摘要 讨论了超定情况下基于稀疏成分分析的盲图像源分离的问题,对线性聚类的条件及超定情况基于线性聚类的盲源分离做出了证明,通过准确的估计混合源的数目,对小波域基于稀疏成分分析的分离算法做了改进,给出了一种超定情况下的盲图像源分离方案.实验结果表明,改进的盲源分离算法能实现超定情况下的盲图像源分离,而直接利用稀疏成分分析的方法及经典的FastICA的方法分离结果均欠佳. In this paper, the problem of over-determined blind image source separation based on sparse component analysis was discussed, and the conditions of linear cluster and over-determined blind source separation were proved. The separation algorithm based on sparse component analysis in wavelet domain was improved by estimating the numbers of sources. Experiment result shows that improved algorithm can extract all the image sources under over-determined conditions, while the sparse component analysis method used directly and the classical FastlCA algorithm cannot separate the mixtures perfectly.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2012年第3期61-64,共4页 Journal of Qufu Normal University(Natural Science)
基金 山东省优秀中青年科学家科研奖励基金(BS2010DX012) 曲阜师范大学基金(XJ201010)
关键词 超定 稀疏成分分析 盲源分离 over-determined sparse component analysis blind source separation
  • 相关文献

参考文献10

  • 1余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 2马丽艳,李宏伟.一种基于非线性PCA的卷积混合盲源分离算法[J].电子学报,2008,36(5):1009-1012. 被引量:8
  • 3胡可,汪增福.一种基于时频分析的语音卷积信号盲分离算法[J].电子学报,2006,34(7):1246-1254. 被引量:12
  • 4TAN Bei-hai, FU Yu-li. Mixture matrix identification of underdetermined blind source separation based on plane clustering alg orithm[C]. ICIC 2006: 60-65.
  • 5游荣义,陈忠.一种基于ICA的盲信号分离快速算法[J].电子学报,2004,32(4):669-672. 被引量:21
  • 6WANG Zhong-ni, YU Xian-chuan, ZhANG Li-bao. A novel remote sensin g image fusion algorithm based on IWT-ICA[ C]. AL- PIT 2008: 187-192.
  • 7余先川,曹婷婷,胡丹,张立保,代莎.基于小波变换和稀疏成分分析的盲图像分离法[J].北京邮电大学学报,2010,33(2):58-63. 被引量:13
  • 8Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. Society for industrial and applied mathematics [ J ]. 2009, 51 ( 1 ) : 34-81.
  • 9Fadili J M, Starck J L, Bobin J, et al. Image decomposition and separation usin g sparse representations: an overview[J]. Pro- ceedings of the IEEE, 2010, 98 (6) : 983 - 994.
  • 10Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signal and images [ J ]. Society for industrial and applied mathematics ( SIAM REVIEW), 2009, 51 ( 1 ) : 34-81.

二级参考文献55

  • 1吕齐,朱孝龙,张贤达.卷积盲信号分离的非线性PCA方法[J].清华大学学报(自然科学版),2006,46(4):492-494. 被引量:6
  • 2胡可,汪增福.一种基于时频分析的语音卷积信号盲分离算法[J].电子学报,2006,34(7):1246-1254. 被引量:12
  • 3Tan Beihai, Fu Yuli. Mixture matrix identification of underdetermined blind source separation based on plane clustering algorithm [ C ] // ICIC 2006. Kunming: [ s. n.], 2006: 60-65.
  • 4Wang Zhongni, Yu Xianchuan, Zhang Libao. A novel remote sensing image fusion algorithm based on IWT-ICA [C]//ALPIT2008. Dalian: [s.n.], 2008: 187-192.
  • 5Cao Jianting, Noboru Murata, Shunichi Amari, et al. Independent component analysis for unaveraged single-trial MEG data decomposition and single-dipole source localization [ J ]. Neurocomputing, 2002 (49) : 255-277.
  • 6Li Yuanqing, Cichocki A, Amari S. Sparse component analysis for blind source separation with less sensors than sources[C]//ICA2003. Nara: [s. n.], 2003: 89-94.
  • 7Shi Zhenwei, Tang Huanwen, Tang Yiyuan. Blind source separation of more sources than mixtures using sparse mixture models[ J]. Pattern Recognition Letters, 2005 ( 26 ) : 249 1-2499.
  • 8Georgiev P G, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Trans on Neural Networks, 2005, 16(4) : 992-996.
  • 9Theis F J, Pando Georgiev, Andrzej Cichocki. Robust sparse component analysis based on a generalized hough transform[J]. EURASIP Journal on Advances in Signal Processing, 2007, 12 : 1-13.
  • 10Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary[ J]. Neural Computation, 2001, 13(4) : 863-852.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部