期刊文献+

基于极大似然准则和最大期望算法的自适应UKF算法 被引量:38

An Adaptive UKF Algorithm Based on Maximum Likelihood Principle and Expectation Maximization Algorithm
在线阅读 下载PDF
导出
摘要 针对噪声先验统计特性未知情况下的非线性系统状态估计问题,提出了基于极大似然准则和最大期望算法的自适应无迹卡尔曼滤波(Unscented Kalman filter,UKF)算法.利用极大似然准则构造含有噪声统计特性的对数似然函数,通过最大期望算法将噪声估计问题转化为对数似然函数数学期望极大化问题,最终得到带次优递推噪声统计估计器的自适应UKF算法.仿真分析表明,与传统UKF算法相比,提出的自适应UKF算法有效克服了传统UKF算法在系统噪声统计特性未知情况下滤波精度下降的问题,并实现了系统噪声统计特性的在线估计. In order to solve the state estimation problem of nonlinear systems without knowing prior noise statistical characteristics, an adaptive unscented Kalman filter (UKF) based on the maximum likelihood principle and expectation maximization algorithm is proposed in this paper. In our algorithm, the maximum likelihood principle is used to find a log likelihood function with noise statistical characteristics. Then, the problem of noise estimation turns out to be maximizing the mean of the log likelihood function, which can be achieved by using the expectation maximization algorithm. Finally, the adaptive UKF algorithm with a suboptimal and recurred noise statistical estimator can be obtained. The simulation analysis shows that the proposed adaptive UKF algorithm can overcome the problem of filtering accuracy declination of traditional UKF used in nonlinear filtering without knowing prior noise statistical characteristics and that the algorithm can estimate the noise statistical parameters online.
出处 《自动化学报》 EI CSCD 北大核心 2012年第7期1200-1210,共11页 Acta Automatica Sinica
基金 国际合作项目(2010DFR80140)资助~~
关键词 非线性滤波 自适应UKF算法 噪声统计估计器 极大似然准则 最大期望算法 Nonlinear filtering, adaptive unscented Kahnan filter (UKF) algorithm, noise statistical estimator, maximum likelihood principle, expectation maximization (EM) algorithm
  • 相关文献

参考文献24

  • 1Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638.
  • 2Bolviken E, Acklam P J, Christophersen N, Stcrdal J M. Monte Carlo filters for non-linear state estimation. Auto- matca, 2001, 37(2): 177-183.
  • 3Julier S J, Uhlmann J K, Durrant-Whyte H F. A new ap- proach for filtering nonlinear systems. In: Proceedings of the American Control Conference. Washington, USA: IEEE, 1995. 1628-1632.
  • 4Karasalo M, Hu X M. An optimization approach to adaptive Kalman filtering. Automatica, 2011, 47(8): 1785-1793.
  • 5Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 2008, 112(4): 1434-1449.
  • 6Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2): 261-270.
  • 7周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695. 被引量:192
  • 8夏启军,孙优贤,周春晖.渐消卡尔曼滤波器的最佳自适应算法及其应用[J].自动化学报,1990,16(3):210-216. 被引量:73
  • 9Lesmes L A, Jeon S T, Lu Z L, Dosher B A. Bayesian adap- tive estimation of threshold versus contrast external noise functions: the quick TvC method. Vision Research, 2006, 46(19): 3160-3176.
  • 10Parthasarathy S, Balaji C. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference -- effect of noise and a priori. International Journal of Heat and Mass Transfer, 2008, 51(9--10): 2313-2334.

二级参考文献24

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2夏启军,孙优贤,应依群.超薄型电容器纸定量水份计算机控制[J].中国造纸,1989,8(3):46-52. 被引量:3
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491.

共引文献424

同被引文献377

引证文献38

二级引证文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部