期刊文献+

计及接触线垂向不平顺的弓网耦合动力学分析 被引量:16

Dynamics of Pantograph-catenary Coupled System with Contact Wire Vertical Irregularities
在线阅读 下载PDF
导出
摘要 建立弓网系统垂向耦合动力学模型,将接触线垂向不平顺实测数据引入该模型,仿真得到计及接触线垂向不平顺时不同速度条件下的弓网间接触压力值;以接触线垂向不平顺实测数据为基础,建立接触线垂向不平顺谱,对该线路的接触线垂向平顺状态进行评估;基于三角级数合成法得到一系列具有相同功率谱密度的接触线垂向不平顺样本,仿真分析得到弓网间接触压力的统计量。通过研究,揭示了接触线垂向不平顺对弓网间接触压力的影响规律。 Dynamical responses of the pantograph-catenary coupled system were studied in consideration vertical irregularities of contact wires. The dynamical model of the pantograph-catenary coupled system was estab- lished. The measured data of vertical irregularities of contact wires were introduced into the modal. Though simulation, the contact pressures between the pantograph and contact wires of vertical irregularities were ob- tained for different train speeds. The contact wire vertical irregularity PSD was worked out by using maximum entropy spectral estimation (MESE) based on the measured contact wire height data. The regularity of the con- tact wire heights was evaluated. The contact wire vertical irregularity samples corresponding to the same PSD were obtained and introduced into the pantograph-catenary coupled dynamical model. The statistics of contact pressures between the pantograph and the contact wires were deduCed from simulations. The law of contact wire vertica wire vertica irregularities affecting contact pressures was revealed. The numerical results show that the contact irregularities have significant influence on the dynamics of the pantograph-catenary system.
出处 《铁道学报》 EI CAS CSCD 北大核心 2012年第7期24-29,共6页 Journal of the China Railway Society
基金 国家自然科学基金(10902096 10932009) 中央高校基本科研业务费专项资金(2011QNA4022) 国家重点基础研究发展计划(973计划)(2011CB711105)
关键词 接触线 垂向不平顺 受电弓 功率谱密度 catenary vertical irregularity of contact wire pantograph power spectrum density (PSD)
  • 相关文献

参考文献13

  • 1WU Tian-xing,BRENNAN M J. Basic Analytical Study of Pantograph Catenary System Dynamics [J]. Vehicle Sys- tem Dynamics, 1998, 30: 443-456.
  • 2韩福景,杨绍普,郭京波.参数激励下受电弓系统的分岔与混沌[J].石家庄铁道学院学报,2004,17(1):25-29. 被引量:4
  • 3KIM J W, CHAE H C, PARK B S, et al. State Sensitivity Analysis of the Pantograph System for a High-speed Rail Vehicle Considering Span Length and Static Uplift Force [J]. Journal of Vibration and Control, 2007, 303: 405- 427.
  • 4宦荣华,潘国峰,金伟良,朱位秋.计及列车车体随机振动影响时受电弓的随机动力响应[J].铁道学报,2010,32(3):39-42. 被引量:11
  • 5ZHANG Wei-hua, LIU Yi, MEI Gui-ming. Evaluation of the Coupled Dynamical Response of a Pantograph-catenary System: Contact Force and Stresses[J]. Vehicle System Dynamics, 2006, 44(8) : 645-658.
  • 6CHO Yong-hyeon. Numerical Simulation of the Dynamic Responses of Railway Overhead Contact Lines to A Mov- ing Pantograph, Considering a Nonlinear Dropper [J]. Journal of Sound and Vibration, 2008, 315(3): 433-454.
  • 7SCHAUB M, SIMEON B. Pantograph-catenary Dynam- ics: An Analysis of Models and Simulation Techniques [J]. Mathematical and Computer Modelling of Dynamical Systems, 2001, 7(2): 225-238.
  • 8EOLLINA A, CONTE AL, CARNEVALE M. Effect of Collector Deformable Modes in Pantograph-catenary Dy- namic Interaction[J]. Journal of Rail and Rapid Transit, 2009, 223(1) :1-14.
  • 9周宁,张卫华.双弓作用下弓网动力学性能[J].西南交通大学学报,2009,44(4):552-557. 被引量:22
  • 10NAGASAKA S, ABOSHI M. Measurement and Estima- tion of Contact Wire Unevenness[J]. Quarterly Report of RTRI, 2004, 45(2): 86-91.

二级参考文献23

  • 1张卫华.准高速接触网动态性能的研究[J].西南交通大学学报,1997,32(2):187-192. 被引量:19
  • 2WU T X,BRENNAN M J.Dynamic stiffness of a railway overhead wire system and its effect on pantograph catenary system dynamics[J].Journal of Sound and Vibration,1999,219(3):483-502.
  • 3ARNOLD M,SIMEON B.Pantograph and catenary dynamics:a benchmark problem and its numerical solution[J].Applied Numerical Mathematics,2000,34(4):345-362.
  • 4LOPEZ-GARCIA O,CARNICEROA A,TORRESB V.Computation of the initial equilibrium of railway overheads based on the catenary equation[J].Engineering Structures,2006,28(10):1387-1394.
  • 5METRIKINE A V,BOSCH A L.Dynamic response of a two-level catenary to a moving load[J].Journal of Sound and Vibration,2006,292(3-5):676-693.
  • 6SHAN Q,ZHAI W M.A macroelement method for catenary mode analysis[J].Computers and Structures,1998,69(6):767-772.
  • 7PARKA T J,HANB C S,JANGC J H.Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J].Journal of Sound and Vibration,2003,266(2):235-260.
  • 8ZHANG Weihua,LIU Yi,MEI Guiming.Evaluation of the coupled dynamical response of a pantograph-catenary system:contact force and stresses[J].Vehicle System Dynamics,2006,44(8):645-658.
  • 9NEWMARK N M.A method of computation for structural dynamics[J].Journal of Engineering Mechanics,1959,85(2):67-94.
  • 10Poetsch G, Evans J, Meisinger R,et al. Pantograph catenary dynamics and control [J]. Vehicle System Dynamics, 1997, 28(2): 159-195.

共引文献72

同被引文献526

引证文献16

二级引证文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部