期刊文献+

基于二维稀疏表示和范数优化的织物疵点分类研究 被引量:2

Study on a Fabric Defect Classification Based on Two-dimensional Sparse Representations and a Norm Optimization
在线阅读 下载PDF
导出
摘要 针对一维压缩采样丢失图像的结构信息,并带来识别精度损失的问题,提出了二维压缩采样的方法.利用一组稀疏基对疵点原始数据进行感知得到稀疏化数据,将织物疵点数据用二维稀疏表示,再利用范数优化的方法实现压缩数据的准确重建,根据稀疏基的不同得到织物疵点的不同分类.该方法解决了采集数据的泛滥和传感器的浪费,降低了计算的复杂度,有利于织物疵点的分类研究,进而为机器视觉识别织物疵点打下理论基础. As to sampling loss of the structural information of the image for the one-dimensional compression and the loss of recognition accuracy,a concept of two-dimensional compression samples is proposed.Using a set of sparse-based perception,the sparse data on the raw data of the defect,fabric defect two-dimensional sparse are gotten.Finally,using norm optimization method accurate reconstruction of the compressed data is realized,and different fabric defect classification is gotten.This approach solves the proliferation of data collection and the sensor waste and greatly reduces the computational complexity,fabric defect classification,and thus to lay a theoretical foundation for machine vision to identify fabric defects.
机构地区 中原工学院
出处 《中原工学院学报》 CAS 2012年第3期24-28,共5页 Journal of Zhongyuan University of Technology
基金 河南省科技攻关计划项目(0721002210032)
关键词 二维稀疏 织物疵点 范数优化 分类 two-dimensional sparse fabric defects norm optimization classification
  • 相关文献

参考文献15

  • 1Donoho D, Elad M. Optimal Sparse Representation in General (nonorthogonal) Dictionaries via L1 Minimization[C]. New York.. In Proceedings of the National Academy of Sciences, 2003.
  • 2Donoho D. For Most Large Underdetermined Systems of Linear Equations the Minimal 1-norm Solution is also the Sparsest So lution Comm[J]. On Pure and Applied Math, 2006,59(6):797-829.
  • 3Wright J, Yang A,Ganesh A, et al. Robust Face Recognition via Sparse Representation [J]. IEEE Transactions on Pattern A nalysis and Machine Intelligence,2009,31(2):210-227.
  • 4戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:217
  • 5Wright J. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2009,31(2) :227-229.
  • 6焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:318
  • 7Davenport M A. The Smashed Filter for Compressive Classification and Target Recognition[EB/OL]. [2012-03-03]. http:// dsp. rice. edu/sites/dsp, rice. edu/files/cs/spieO7-final, pdf.
  • 8Duarte M. Multiscale Random Projections for Compressive Classification [C]. Texas: IEEE on Image Processing (ICIP) 2007.
  • 9Wakin M B. Manifold-based Signal Recovery and Parameter Estimation[J]. Compressive Measurements (Preprint), 2008,22 (3) :226-231.
  • 10Peyre G. Manifold Models for Signals and Images [J]. Computer Vision and Image Understanding,2009,113(2):249-260.

二级参考文献152

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 4Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 5Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 6Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 8Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 9Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 10Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.

共引文献492

同被引文献22

  • 1卿湘运,段红,魏俊民.基于局部熵的织物疵点检测与识别的研究[J].纺织学报,2004,25(5):57-58. 被引量:32
  • 2张家树.灰度图象的最大最小优化熵阀值分割[J].电讯技术,1995,35(6):42-45. 被引量:4
  • 3袁端磊,宋寅卯.基于最优Gabor滤波器的织物缺陷检测[J].中国图象图形学报,2006,11(7):954-958. 被引量:10
  • 4Donoho D, Elad M. Optimal Sparse Representation in Gen- eral (nonorthogonal) Dictionaries via L1 Minimization [ C ]. New York : In Proceedings of the National Academy of Sciences, 2003.
  • 5Donoho D. For Most Large Underdetermined Systems of Linear Equations the Minimal 1 - norm Solution is also the Sparsest Solution Comm [ J ]. On Pure and AppliedMath, 2006,59 (6) : 797 - 829.
  • 6Peyr6 G. Manifold Models for Signals and Images [ J ]. Computer Vision and Image Understanding, 2009, 113 (2) : 249 - 260.
  • 7Wakin M B. Manifold - Based Signal Recovery and Pa- rameter Estimation [ J ]. Compressive Measurements ( Pre- print), 2008, 22(3) :226 -231.
  • 8Davenport M A. The Smashed Filter for Compressive Clas- sification and Target Recognition [ C ]. Canada: In Pro- ceedings of Computational Imaging V at SPIE Electronic Imaging, 2007.
  • 9Deanna Needell, Roman Vershynin. Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit [ J ]. Foundations of Computational Mathematics, 2009, 9(3):317-334.
  • 10Liang Liao, Zhoufeng Liu and Yanning Zhang. "Image classification via nearest subspace and two - dimensional underdetermined random projection" [ J ]. IEEE Industri- al electronics and applications (ICIEA 2012 ), 2012, (7).

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部