期刊文献+

Hardware Architecture for RSA Cryptography Based on Residue Number System

Hardware Architecture for RSA Cryptography Based on Residue Number System
在线阅读 下载PDF
导出
摘要 A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz. A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman (RSA) cryptog- raphy is proposed. Residue number system (RNS) is introduced to realize high parallelism, thus all the elements under the same base are independent of each other and can be computed in parallel. Moreover, a simple and fast base trans- formation is used to achieve RNS Montgomery modular multiplication algorithm, which facilitates hardware imple- mentation. Based on transport triggered architecture (TTA), the proposed architecture is designed to evaluate the per- formance and feasibility of the algorithm. With these optimizations, a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.
出处 《Transactions of Tianjin University》 EI CAS 2012年第4期237-242,共6页 天津大学学报(英文版)
基金 Supported by the Natural Science Foundation of Tianjin (No. 11JCZDJC15800) the National Natural Science Foundation of China(No. 61003306)
关键词 residue number system RSA cryptography Montgomery algorithm computer architecture parallelalgorithm RSA加密 硬件架构 余数系统 硬件实现 并行计算 体系结构 密码学 平行度
  • 相关文献

参考文献3

二级参考文献38

  • 1Rivest R L, Shamir A, Adleman L. Method for obtaining digital signatures and public key cryptosystems[J]. Communications of the ACM, 1978,21(2) : 120 - 126.
  • 2Peter L Montgomery. Modular multiplication without trial division [J ]. Mathematics of Computation, 1985, 44 (170) : 19 - 521.
  • 3Miaoqing Huang, Kris Gaj, Soonhak Kwon, et al. An optimized hardware architecture for the montgomery multiplication algorithm [J ]. Public Key Cryptography - PKC, LNCS, 2008(4939) :214 - 228.
  • 4Alexandre F Tenca, cetin K. A scalable architecture for montgomery multiplication[J]. CHES 1999, LNCS, 1999 (1717) : 94 - 108.
  • 5Alexandre F, Tenca, cetin K, et al. A scalable architecture for modular multiplication based on montgomery's algorithm[J]. IEEE Transactions on Computers, 2003,52 (9) : 1215 - 1220.
  • 6KOCHER P,JAFFE J,JUN B.Differential Power Analysis[C] //CRYPTO '99.[s.1.] :Springer-Verlag,1999:388-397.
  • 7NOVAK R,SPA-Based Adaptive Chosen-Ciphertext Attack on RSAImplementation[C] //PKC 2002.[s.1.] :Springer-Verlag,2002:256-261.
  • 8FOUQUE P A,MARTINET G,POUPARD G,Attacking Unbalanced RSA-CRT Using SPA[C] // CHES 2003.[s.1.] :Springer-Verlag,2003:254-268.
  • 9BOER B den,LEMKE K,WICKE G.A DPA Attack Against the Modular Reduction within a CRT Implementation of RSA[C] // CHES 2002.[s.l.] :Springer-Verlag,2003:228-243.
  • 10WITTEMAN M.A DPA Attack on RSA in CRT Mode,[EB/OL].(2009-4-3).[2010-08-06].http://www.riscure.com/fileadmin/images/Docs/DPA attack on RSA in CRT mode by Riscure.pdf.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部