期刊文献+

基于累积边缘图像的现实人体动作识别 被引量:15

Recognizing Realistic Human Actions Using Accumulative Edge Image
在线阅读 下载PDF
导出
摘要 为了从现实环境下识别出人体动作,本文研究了从无约束视频中提取特征表征人体动作的问题.首先,在无约束的视频上使用形态学梯度操作消除部分背景,获得人体的轮廓形状;其次,提取某一段视频上每一帧形状的边缘特征,累积到一幅图像中,称之为累积边缘图像(Accumulative edge image,AEI);然后,在该累积边缘图像上计算基于网格的方向梯度直方图(Histograms of orientation gradients,HOG),形成特征向量表征人体的动作,送入分类器进行分类.YouTube数据集上的实验结果表明,本文的方法比其他方法更加有效. The problem of extracting feature from uncon- strained videos for representing human actions has been investi- gated in order to recognize human actions in complex environ- ment in this paper. Firstly, morphological gradient was used to eliminate most background information. Then, edge of shape was extracted and accumulated to a frame, which was named accumulative edge image (AEI). Grid-based histograms of ori- entation gradients (HOG) were calculated and formed a fea- ture vector that captured the characteristic of human actions in this video sequence. Using support vector machine (SVM), the method was tested on the YouTube action dataset. The obtained impressive results showed that this method was more effective than other methods in YouTube action dataset.
出处 《自动化学报》 EI CSCD 北大核心 2012年第8期1380-1384,共5页 Acta Automatica Sinica
基金 国家自然科学基金(60972158)资助~~
关键词 动作识别 累积边缘图像 方向梯度直方图 支持向量机 Action recognition, accumulative edge image (AEI), histograms of orientation gradients (HOG), support vec- tor machine (SVM)
  • 相关文献

参考文献4

二级参考文献51

  • 1Davis J W, Bobick A F. The representation and recognition of human movement using temporal templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 928-934.
  • 2Wang L, Suter D. Informative shape representations for human action recognition. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1266-1269.
  • 3Mohiuddin A, Lee S W. Human action recognition using shape and CLG-motion flow from multiview image sequences. Pattern Recognition, 2008, 41(7): 2237-2252.
  • 4Weinland D, Boyer E, Ronfard R. Action recognition from arbitrary views using 3D exemplars. In: Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-7.
  • 5Ren H B, Xu G Y. Human action recognition with primitivebased coupled-HMM. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada: IEEE, 2002. 494-498.
  • 6Shen Y P, Ashraf N, Foroosh H. Action recognition based on homography constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 7Yilmaz A, Shah M. Matching actions in presence of camera motion. Computer Vision and Image Understanding, 2006, 104(2-3): 221-231.
  • 8Johansson G. Visual motion perception. Scientific American, 1975, 232(2): 76-88.
  • 9Gu J X, Ding X Q, Wang S J, Wu Y S. Full body trackingbased human action recognition. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 10Gu J X, Ding X Q, Wang S J, Wu Y S. Adaptive particle filter with body part segmentation for full body tracking. In: Proceedings of IEEE Conference on Automatic Face and Gesture Recognition. Amsterdam, The Netherlands: IEEE, 2008. 1-6.

共引文献53

同被引文献308

  • 1胡巍,何小海,高明亮,李木维,郭佩.一种新型的雨雪视频图像复原方法[J].四川大学学报(工程科学版),2012,44(S1):203-207. 被引量:1
  • 2Casile A, Giese M. Roles of motion and form in biologi- cal motion recognition. In: Proceedings of the 2003 Joint International Conference on Artificial Networks and Neural Information Processing. Berlin, Heidelberg: Springer-Verlag 2003. 854-862.
  • 3Mingolla E, Todd J T, Normal J F. The perception of globally coherent motion. Vision Research, 1992, 32(6): 1015-1031.
  • 4Simoncelli E P, tteeger D J. A model of neuronal responses in visual area MT. Vision Research, 1998, 38(5): 743-761.
  • 5Bayerl P, Neumann It. Disambiguating visual motion through contextual feedback modulation. Neural Computa- tion, 2004, 16(10): 2041-2066.
  • 6Bayerl P, Neumann H. A fast biologically inspired algo- rithm for recurrent motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 246- 260.
  • 7Jhuang It, Serre T, Wolf L, Poggio T. A biologically inspired system for action recognition. In: Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 8Thorpe S. Spike arrival times: a highly efficient coding scheme for neural networks. Parallel Processing in Neural Systems and Computers. New York: North-Holland, 1990. 91-94.
  • 9Thorpe S, Fize D, Marlot C. Speed of processing in the hu- man visual system. Nature, 1996, 381(6582): 520-522.
  • 10Escobar M J, Masson G S, Vieville T, Kornprobst P. Ac- tion recognition using a bio-inspired feedforward spiking network. International Journal of Computer Vision, 2009, 82(3): 284-301.

引证文献15

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部