期刊文献+

基于加权可能性均值的直觉梯形模糊数矩阵博弈求解方法 被引量:16

Method based on weighted possibility mean for solving matrix games with payoffs of intuitionistic trapezoidal fuzzy numbers
原文传递
导出
摘要 针对支付值为直觉梯形模糊数(ITFN)的矩阵博弈求解问题,提出了一种基于加权可能性均值的求解方法.定义了ITFN新的运算法则,并引入ITFN的下、上加权可能性均值和加权可能性均值的概念,根据加权可能性均值给出了ITFN新的排序方法;运用新的排序方法,将求解局中人最优策略问题转化为求解双目标线性规划问题.实例分析验证了所提出方法的可行性和有效性. For the problem of matrix games with payoffs of intuitionistic trapezoidal fuzzy numbers(ITFNs), a solving method based on weighted possibility mean is proposed. The new operation laws for ITFNs are defined. The notions of lower and upper weighted possibility means for ITFNs are introduced as well as the weighted possibility mean. A new ranking approach for ITFNs is given according to the weighted possibility mean. According to the new ranking approach, the optimal strategies of two players can be obtained by solving the bi-objective linear programming model. The example analysis verifies the feasibility and effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2012年第8期1121-1126,1132,共7页 Control and Decision
基金 国家自然科学基金项目(71061006,70861002) 教育部人文社科项目(09YGC630107) 江西省自然科学基金项目(20114BAB201012) 江西省教育厅科技项目(GJJ12265) 江西财经大学优秀青年学术人才支持计划项目 江西财经大学第6届学生科研课题项目
关键词 直觉梯形模糊数 矩阵博弈 可能性均值 双目标规划 直觉模糊集 intuitionistic trapezoidal fuzzy number matrix game possibility mean: bi-objective programming intuitionistic fuzzy set
  • 相关文献

参考文献14

  • 1Bector C R, Chandra S, Vijay V. Matrix games with fuzzy goals and fuzzy linear programming duality[J]. Fuzzy Optimization and Decision Making, 2004, 3(3): 255-269.
  • 2Bector C R, Chandra S, Vijay V. Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs[J]. Fuzzy Sets and Systems, 2004, 146(2): 253-269.
  • 3Deng-Feng Li. Lexicographic method for matrix games with payoffs of triangular fuzzy numbers[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008, 16(3): 371-389.
  • 4Deng-Feng Li, Jiang-Xia Nan. A nonlinear programming approach to matrix games with payoffs of Atanassov’s intuitionistic fuzzy sets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2009, 17(4): 585-607.
  • 5V. Vijay, S. Chandra and C. R. Bector, Matrix games with fuzzy goals and fuzzy payoffs[J]. Omega, 2005, 33: 425-429.
  • 6南江霞,李登峰,张茂军.支付值为区间直觉模糊集的矩阵对策的线性规划求解方法[J].控制与决策,2010,25(9):1318-1323. 被引量:8
  • 7Jiang-Xia Nan, Deng-Feng Li, Mao-Jun Zhang. A Lexicographic Method for Matrix Games with Payoffs of Triangular Intuitionistic Fuzzy[J]. International Journal of Computational Intelligence Systems, 2010, 3(9): 280-289.
  • 8Wang Jianqiang Zhang Zhong.Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems[J].Journal of Systems Engineering and Electronics,2009,20(2):321-326. 被引量:64
  • 9王坚强,张忠.基于直觉梯形模糊数的信息不完全确定的多准则决策方法[J].控制与决策,2009,24(2):226-230. 被引量:95
  • 10Wei G W. Some arithmetic aggregation operators with intuitionistic trapezoidal fuzzy numbers and their application to group decision making[J]. Journal of Computer, 2010, 5(3): 345-351.

二级参考文献35

  • 1王坚强.信息不完全的Fuzzy群体多准则决策的规划方法[J].系统工程与电子技术,2004,26(11):1604-1608. 被引量:31
  • 2王坚强.信息不完全确定的多准则区间直觉模糊决策方法[J].控制与决策,2006,21(11):1253-1256. 被引量:61
  • 3徐泽水,陈剑.一种基于区间直觉判断矩阵的群决策方法[J].系统工程理论与实践,2007,27(4):126-133. 被引量:140
  • 4Aouam T, Chang S I, Lee E S. Fuzzy MADM: An outranking method [J ]. European J of Operational Research, 2003, 145(2): 317-328.
  • 5Chu Tachung. A fuzzy number interval arithmetic based fuzzy MCDM algorithm[J]. Int J of Fuzzy Systems, 2002, 4(4): 867-872.
  • 6Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 7De S K, Biswas R, Roy A R. An application of intuitionistic fuzzy sets in mdical diagnosis[J]. Fuzzy Sets and Systems, 2001, 117(2): 209-213.
  • 8Li D F, Chen C T. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions[J]. Pattern Recognition Letters, 2002, 23 (1-3) : 221-225.
  • 9Przemysiaw Grzegorewski. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the hausdorff metric [J]. Fuzzy Sets and Sysetms, 2004, 148(2): 319-328.
  • 10Li D F. Multiattribute decision making models and methods using intuitionistic fuzzy sets [J]. J of Computer System Science, 2005, 70(1): 73-85.

共引文献148

同被引文献213

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部