期刊文献+

Markov逻辑网在基于信任的推荐系统中的应用

Markov logic networks with its application in trust based recommender systems
在线阅读 下载PDF
导出
摘要 基于信任的推荐系统是利用信任的实体进行项目推荐,然而信任是一个复杂的概念,对信任进行传播和预测是一项重要的任务。提出了用一种统计关系模型——Markov逻辑网来表示信任的传递性质,讨论了Markov逻辑网的理论模型,通过其推理算法预测信任关系,实验结果表明,在基于信任的推荐系统中Markov逻辑网方法比MoleTrust方法在推荐精度和解决冷用户问题上有更好的效果。 The trust based recommender system is to use the trusted entities to recommend items.As trust is a complex concept,to propagate and predict trust is an important task.A Statistical Relational Learning(SRL)model,Markov Logic Networks(MLNs),is proposed to present the transfer properties of trust.The theory model of MLNs is discussed.With MLNs’s reasoning algorithm,the trust relationships are predicated.In the trust based recommender systems,the experimental results show that MLNs has a higher accuracy and better solution of cold-user problem than MoleTrust approach.
出处 《计算机工程与应用》 CSCD 2012年第23期81-84,147,共5页 Computer Engineering and Applications
基金 中央高校研究生科技创新基金(No.CDJXS11180013) 重庆市自然科学基金(No.CSTC2008BB2191)
关键词 MARKOV逻辑网 信任 推荐系统 统计关系学习 Markov logic networks trust recommender systems statistical relational learning
  • 相关文献

参考文献12

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:396
  • 2许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:548
  • 3] Massa P, Bhattacharjee B.Using trust in recommender systems : an experimental analysis[C]//Proceedings of iTrust 2004 International Conference, 2004 221-235.
  • 4Richardson M, Domingos P.Markov logic networks[D]. Seattle, Washington, USA: University of Washington, 2004.
  • 5Jcsang A,Ismail R,Boyd C.A survey of trust and repu- tation systems for online service provision[J].Decision SUPport Systems. 2007.2 : 618-644.
  • 6Massa P,Avesani RTrust metrics on controversial users balancing between tyranny of the majority and echo chambers[J].International Journal on Semantic Web and Information Systems, 2007.
  • 7Lowd D, Domingos EEfficient weight learning for Markovlogic networks[C]//Proceedings of the llth European Conference on Principles and Practice of Knowledge Discovery in Databases.Warsaw, Poland: Springer, 2007: 200-211.
  • 8Andrieu C, de Freitas N, Doucet A, et al.An introduction to MCMC for machine leaming[J].Machine Learning, 2003 : 5-43.
  • 9Poon H,Domingos P.Sound and efficient inference with probabilistic and deterministic dependencies[C]//AAAI, 2006-458-463.
  • 10Singla P, Domingos RDiscriminative training of Markov logic networks[C]//Proceedings of the 20th National Conference on Artificial Intelligence.Pittsburgh, PA : AAAI Press, 2005 : 868-873.

二级参考文献113

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献918

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部