摘要
基于信任的推荐系统是利用信任的实体进行项目推荐,然而信任是一个复杂的概念,对信任进行传播和预测是一项重要的任务。提出了用一种统计关系模型——Markov逻辑网来表示信任的传递性质,讨论了Markov逻辑网的理论模型,通过其推理算法预测信任关系,实验结果表明,在基于信任的推荐系统中Markov逻辑网方法比MoleTrust方法在推荐精度和解决冷用户问题上有更好的效果。
The trust based recommender system is to use the trusted entities to recommend items.As trust is a complex concept,to propagate and predict trust is an important task.A Statistical Relational Learning(SRL)model,Markov Logic Networks(MLNs),is proposed to present the transfer properties of trust.The theory model of MLNs is discussed.With MLNs’s reasoning algorithm,the trust relationships are predicated.In the trust based recommender systems,the experimental results show that MLNs has a higher accuracy and better solution of cold-user problem than MoleTrust approach.
出处
《计算机工程与应用》
CSCD
2012年第23期81-84,147,共5页
Computer Engineering and Applications
基金
中央高校研究生科技创新基金(No.CDJXS11180013)
重庆市自然科学基金(No.CSTC2008BB2191)
关键词
MARKOV逻辑网
信任
推荐系统
统计关系学习
Markov logic networks
trust
recommender systems
statistical relational learning