期刊文献+

具有SIFT描述的Harris角点多源图像配准 被引量:12

Registration of Multi-sensor Images Based on Harris Corner with SIFT Description
在线阅读 下载PDF
导出
摘要 多源传感器成像原理的差异给图像配准带来了很大困难,本文针对红外与可见光图像配准提出了一种具有SIFT描述特征的Harris角点多源图像配准算法。首先建立多尺度空间,以多尺度空间检测尺度不变的Harris角点作为特征点;然后通过改进SIFT对特征点的描述方法,采用圆环结构算子对Harris角点进行类SIFT的特征描述;最后利用双向最近邻方法进行匹配,通过最小二乘法实现图像的配准。实验证实了算法配准的精确性、快速性和稳定性,具有较好的配准效果。 Multi-sensorimage registration is very difficult because of their different imaging principles. Referring to the registration of infrared and visible images, a registration algorithm is proposed based on the Harris comer with SIFT description. First, the scale spaces were built, and the scale-invariant Harris comers were selected as feature points. Then, by improving SIFT description method of feature points, ring operator was used to describe feature points. Finally, feature points were matched by the two-way nearest neighbor algorithm, and least squares method was employed to find optimal solutions to affine transform equations. Experimental results show that the registration algorithm is accurate, efficient and stable, and has a good registration result.
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期26-31,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助(61070108) 解放军理工大学工程兵学院基金资助
关键词 多源图像 多尺度Harris角点 SIFT描述 图像配准 multi-sensor images multi-scale Harris comer SIFT description image registration
  • 相关文献

参考文献9

  • 1Zitova B, FlusserJ. Imageregistrationmethods: asurvey [J].lmage and Vision Computing(S0262-8856), 2003, 21(11): 977-1000.
  • 2Lowe D. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110.
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 4David G L. Object Recognition from Local Scale-invariant Features [C]// The Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, September 20-27, 1999, 2: 1150-1157.
  • 5赵明,林长青.基于改进SIFT特征的红外与可见光图像配准方法[J].光电工程,2011,38(9):130-136. 被引量:16
  • 6Mikajczyk K, Schmid C. Scale & affine invariant interest point detectors [J]. International Journal of Computer Vision(S0920-5691), 2004, 60(1): 63-86.
  • 7Lowe D G. Distinctive image features from scalek-invari-ant keypoints [J]. International Journal of Computer Vision(S0920-5691), 2004, 60(2): 91-110.
  • 8GAO Jian, HUANG Xin-han, LIU Bo. A quick scale-invariant in-terest point detecting approach [J]. Machine Vision and Applications(S0932-8092), 2008, 21(3): 351-364.
  • 9Lindeberg T. Scale space theory: a basic tool for analyzing structures at different scales [J]. Journal of Applied Statistics(S0266-4763), 1994, 21: 224-270.

二级参考文献22

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 2Lowe David G. Distinctive Image Features from Scale-Invariant Interest Points [J]. International Journal of Computer Vision(S0920-5691), 2004, 60(2): 91-100.
  • 3Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. COMMUN ACM(S0001-0782), 1981, 24(6): 381-395.
  • 4Yao J, Cham W K. Robust Multi-view Feature Matching from Multiple Unordered Views [J]. Pattern Recognition (S0031-3203), 2007, 40(11): 3081-3099.
  • 5Witkin A P, Babaud J, Bandin M. Uniqueness of Gaussian kernel for scale-space filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1996, 8(1): 26-33.
  • 6SMITH S M, BRADY J M. SUSAN-A New Approach to Low Level Image Processing [J]. International Journal of Computer Vision(S0920-5691), 1997, 23(1): 45-78.
  • 7Torr P H S, Zisseiman A. Feature based methods for structure and motion estimation [C]//ICCV '99 Proceedings of the InternationalWorkshop on Vision Algorithms: Theory and Practice, Corfu, Greece, September 21-22, 1999: 278-294.
  • 8Brown L G.A Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24:325-376.
  • 9Zitová B,Flusser J.Image Registration Methods:A Survey[J].Imaging and Vision Computing,2003,21:977-1000.
  • 10Moigne J L,Campbell W J,Cromp R F.An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features[J].IEEE Trans.Geoscicence and Remote Sensing,2002,40(8):1849-1864.

共引文献168

同被引文献102

引证文献12

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部