摘要
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).