期刊文献+

基于计算机视觉的储粮活虫检测系统软件设计 被引量:8

Software Design of Detection System for Stored-grain Live Insects Based on Computer Vision
在线阅读 下载PDF
导出
摘要 介绍了基于计算机视觉的储粮活虫检测系统软件部分各环节的具体实现。系统运用基于标记点透视变换的图像配准方法,对近红外图像进行倾斜、变形等校正;采用基于双区域连通阈值面积比的区域生长法判别出近红外图像中的活虫;融合多源图像的信息,准确定位出可见光图像中的活虫。提取出活虫的21个整体形态学特征和7个局部形态学特征,把特征空间优化为7维,运用SAA-SVM分类器进行识别分类。结果表明,检测系统对15类活虫的正确识别率达到94.8%。 The detection system for stored-grain live insects was introduced based on visible-near infrared computer vision, and the software realization of the main parts in the system was given. The near infrared images were sloped and distorted by the image registration based on projection transformation with markers. The region-growing method for identifying the live insects in the near infrared image was proposed based on the area ratio of two thresholds for connecting regions. The live insects in the visible image were located accurately by the information fusion of the multi-source images. The live insects in the visible image were located accurately by the information fusion of the multi-source images. Twenty-one global morphological features and seven local morphological features of the live insects were extracted, and the feature space was optimized to seven dimensions. The insects were classified by the classifier based on simulated annealing algorithm and support vector machine. The results showed that the recognition accuracy was 94. 8% for the fifteen species of the live insects.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2012年第8期180-186,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31101085 30871449) 河南省基础与前沿研究计划资助项目(122300410145) 河南省高等学校青年骨干教师资助项目(2011GGJS-094) 河南省教育厅自然科学研究计划资助项目(2011B210028) 华北水利水电学院高层次人才科研启动项目
关键词 储粮活虫 计算机视觉 特征提取 图像识别 检测 Stored-grain live insects, Computer vision, Feature extraction, Image recognition, Detection
  • 相关文献

参考文献9

  • 1Neethirajan S, Karunakaran C, Jayas D S, et al. Detection techniques for stored-product insects in grain[ J l- Food Control, 2007,18(2) :157 - 162.
  • 2Singh C B, Jayas D S, Paliwal J, et al. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging [ J ]. Journal of Stored Products Research, 2009,45 ( 3 ) : 151 - 158.
  • 3毛罕平,张红涛.储粮害虫图像识别的研究进展及展望[J].农业机械学报,2008,39(4):175-179. 被引量:27
  • 4张红涛,胡玉霞,毛罕平,韩绿化,乌慧玲.基于计算机视觉的储粮活虫检测系统硬件设计[J].农业机械学报,2012,43(4):193-196. 被引量:6
  • 5Gao Zhiyong, Gu Bin, Lin Jiarui. Monomodal image registration using mutual information based methods [ J ]. Image and Vision Computing,2008,26(2) : 164 - 173.
  • 6张红涛.基于可见光一近红外双目计算机视觉的鞘翅目储粮害虫检测研究[D].镇江:江苏大学,2010.
  • 7Hsu C W, Lin C J. A comparison of methods for muhi-class support vector machines [ J]. IEEE Transactions on Neural Networks, 2002,13(2) :415 -425.
  • 8Vasan A, Raju K S. Comparative analysis of simulated annealing, simulated quenching and genetic algorithms for optimal reservoir operation[ J]. Applied Soft Computing, 2009,9(1 ) :274 - 281.
  • 9胡玉霞,张红涛.基于模拟退火算法-支持向量机的储粮害虫识别分类[J].农业机械学报,2008,39(9):108-111. 被引量:33

二级参考文献51

共引文献55

同被引文献115

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部