期刊文献+

模拟生物视觉机制的彩色人脸识别方法 被引量:6

Color face recognition method inspired by biological visual mechanisms
在线阅读 下载PDF
导出
摘要 为了充分利用彩色图像提供的信息提高人脸识别的性能,提出了一种模拟生物视觉机制的彩色人脸识别方法。该方法首先构造一种模拟人类的色彩感知机制的对立色模型,将彩色人脸图像描述为对立色形式。然后,模拟初级视皮层的信息处理机制,从图像对立色描述的亮度分量和色度分量分别提取人脸的纹理特征和色彩特征。最后,分别对纹理特征和色彩特征进行分类识别,并将二者的识别相似度融合得到最终的人脸识别结果。该方法利用对立色模型提高了色彩特征对光照变化的鲁棒性,并且综合利用彩色图像的色彩和纹理信息提高了人脸识别的精度,特别是对模糊图像的识别精度。在彩色FERET人脸库和AR人脸库上的实验表明,相对于直接对灰度图像进行识别的方法,该方法对清晰图像的识别率提高了4.5%~16.3%,而对模糊图像的识别率提升更加显著。 In order to improve the performance of face recognition, a color face recognition method inspired by bio logical visual mechanisms is proposed, which makes extensive use of the information provided in the color image. This method devises an opponent color model, which emulates the color perception mechanism of human, to repre sent the color face image in an opponent color form. Then, a set of facial texture feature and a set of facial color fea ture are separately extracted from the intensity component and the chromatic component of the image opponent color representation using a way that simulates the information processing mechanism of the primary visual cortex. The tex ture feature and color feature are classified respectively, and their similarity scores are fused to obtain the final result of face recognition. The proposed method improves the color feature robustness to illumination variation by means of the opponent color model, and boosts the recognition accuracy, especially the accuracy when the image is blurred, through simultaneously using the texture information and color information of the image. Experiments on the color FERET and AR face databases show that compared with the method that directly classifies gray images, the proposed method improves the recognition accuracy by 4.5% 16.3% when the images are clear, and boosts the accuracy even more when the images are blurred.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第8期1688-1696,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61105093) 重庆市科技攻关计划(CSTC2009AB0175) 中央高校基本科研业务费(CDJXS10122218) 重庆市自然科学基金(CSTC2010BB2230) 高等学校博士学科点专项科研基金(20100191120012)资助项目
关键词 生物视觉机制 彩色人脸识别 对立色模型 纹理特征 色彩特征 biological visual mechanism color face recognition opponent color model texture feature color fea-ture
  • 相关文献

参考文献21

二级参考文献126

  • 1李伟红,刘丽娟,龚卫国,辜小花.人脸识别中基于均匀设计的SVM超参数调节方法[J].光电子.激光,2009,20(10):1342-1347. 被引量:3
  • 2王守觉,孙华,莫华毅.彩色图像特征空间变换的新算法及其应用[J].电子学报,2007,35(2):193-196. 被引量:5
  • 3李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 4Shen L L, Bai L, Fairhurst M. Gabor wavelets and general discriminant analysis for face identification and verification [ J ]. Image and Vision Computing, 2007, 25 (5) : 553- 563.
  • 5Zhang Y M, Ming Z X, Guo Y C. Face recognition base on low dimension Gabor feature using direct fractional-step LDA [ C ]// Proceedings of International Conference on Computer Graphics, Imaging and Vision: New Trends. Washington DC, USA: IEEE Computer Society Press, 2005: 103-108.
  • 6Kruska J B, Wish M. Multidimensional Scaling [ M ] . Beverly Hills and Lodon: Sage Publications, 1975: 133-160.
  • 7Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. Fishefface: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 19(7):711-720.
  • 8Zhao W, Chellappa R, Phillips P J, et al. Face recognition: A literature survey[ J]. ACM Computing Surveys, 2003, 35 (4): 399-458.
  • 9ZhangJP, Shen H X, Zhou Z H. Unified locally linear embedding and linear discriminant analysis algorithm (ullelda) for face recognition [J] . Advances in Biometfic Personal Authentication. LNCS, 2004, 3338:209-307.
  • 10Colmenarez A, Frey B, Huang T S. Embedded face and facial expression recognition [ C ]//Proceedings of International Conference on Image Processing. Washington DC, USA: IEEE Computer Society, 1999: 633-637.

共引文献49

同被引文献75

  • 1单勇,顾广华,单海波.基于支持向量机的彩色图像人脸检测[J].仪器仪表学报,2006,27(z1):760-761. 被引量:4
  • 2陈仲林,翁季,胡英奎,张青文,黄珂,张晟鹏,刘英婴.用数码相机测量亮度分布[J].照明工程学报,2005,16(3):11-14. 被引量:13
  • 3周钢,马鵷鶵,牟同升.数码成像法测量面发光体亮度[J].光学仪器,2006,28(3):12-16. 被引量:15
  • 4MIAO J, YIN B, WANG K, et al. A hierarchical multi- scale and muhiangle system for human face detection in a complex background using gravity-center template [ J ]. Pattern Recognition, 1999, 32 (7) : 1237-1248.
  • 5COOTES T F, WHEELER G V, WALKER K N, et al. View-based active appearance models [ J ]. Image and Vi- sion Computing, 2002(20) :657-664.
  • 6COOTES T F, TWINING C J, BABALOLA K O, et al. Diffeomorphic statistical shape models [ J ]. Image and Vision Computing, 2008,26 (3) :326-332.
  • 7LIN C. Face detection in complicated backgrounds and different illumination conditions by using YCbCr color space and neural network [ J ]. Pattern Recognition Letters, 2007,28 (16) : 2190-2200.
  • 8OSUNA E, FREUND R, GIROSI F. Training support vector machines : an application to face detection [ C ]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ( CVPR' 97), 1997 : 130-136.
  • 9PENTLAND A, MOGHADDAM B, STAMER T. View- based and modular eigenspaces for face recognition [ C ]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ( CVPR' 94), 1994:84-91.
  • 10HADID A, PIETIKAINEN M, AHONEN T. A dis- criminative feature space for detecting and recognizing faces [ C ]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR' 04 ), 2004 ( 2 ) : 797-804.

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部