期刊文献+

基于DES的车辆横风气动性能模拟 被引量:14

Aerodynamic performance of train under cross-wind based on DES
在线阅读 下载PDF
导出
摘要 采用分离涡模拟(DES)方法,就横风对车辆侧向气动性能的影响进行数值计算。结果表明:随着风向角的增大,车辆的气动力系数均单调增大,当风向角为90°时达到最大值;在小风向角的情况下,头车的气动力系数最大,尾车最小。对静止车辆来说,车体前端和尾端的流场结构具有较强的对称性,在车辆的头、尾部均会产生脱落涡,且向列车的中部发展,与从风挡处气流分离产生的脱落涡干涉、融合,形成复杂的湍流结构,而中间车则受头、尾车的影响较小,在背风侧产生规则的脱落涡;同时尾涡内流速较低。对运动车辆来说,气流会在头车前端背风侧的上、下部产生2个脱落涡,并沿着车长方向发展,上部的脱落涡和从风挡处产生的脱落涡融合叠加,而下部的脱落涡则不受风挡的影响,同时漩涡内速度较高。 Using Detached Eddy Simulation method, the aerodynamic performances of moving high-speed train under cross-wind were numerical simulated. The results show that the aerodynamic coefficients are increased monotonously with the increasing of wind angle, and they reach their maximum values when the wind angle is 90°. The aerodynamic coefficients of front car are the largest while that of tail car are smallest. To the still car, the flow structure behind the front car and the tail car are almost symmetry, shed wake vortexes are produced in these area and progress to the middle of the train, these vortexes intervene and merge with the vortexes from the windshield by flow separation and produce complicated flow structure. While the flow structure behind the middle car is rarely influenced by these vortexes and form regular shed wake vortexes and the velocity and vorticity in the wake vortexes are much small. To the moving car, the separated flow from the leeward of front car form two vortexes and progress along the train. One is on the top of head and the other is under the head. The upper vortex merges and overlaps with the vortexes from the windshield while the lower one is not influenced. The velocity and vorticity in the vortexes are much big.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2855-2860,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51075401,U1134203)
关键词 高速列车 横风 分离涡模拟 气动性能 high-speed train cross-wind DES aerodynamic performance
  • 相关文献

参考文献18

  • 1葛盛昌.新疆铁路风区大风天气列车安全运行办法研究[J].铁道运输与经济,2009,31(8):32-34. 被引量:27
  • 2田红旗.中国恶劣风环境下铁路安全行车研究进展[J].中南大学学报(自然科学版),2010,41(6):2435-2443. 被引量:60
  • 3高广军,苗秀娟.强横风下青藏线客车在不同高度桥梁上的气动性能分析[J].中南大学学报(自然科学版),2010,41(1):376-380. 被引量:25
  • 4Andersson E, Haiggstrom J, Sima M. Assessment of train- oveturning risk due to strong cross-winds[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2004, 218(3): 213-223.
  • 5Chris B, Federico C, Alexander O. Cross-wind effects on road and rail vehicles[J]. Vehicle System Dynamics, 2009, 47(8): 982-1022.
  • 6Bocciolone M, Cheli F, Corradi R. Crosswind action on rail vehicles: wind tunnel experimental analyses[J]. Wind Eng Ind Aerodyn, 2008, 96(5): 584-610.
  • 7Hassan H, Chris B. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J]. Computers & Fluids, 2010, 39(10): 1944-1956.
  • 8苗秀娟,田红旗,高广军.线路环境对路堤上列车气动性能的影响[J].中南大学学报(自然科学版),2010,41(5):2028-2033. 被引量:8
  • 9Diedrichs B. Aerodynamic crosswind stability of a regional train model[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2010, 224(6): 580-591.
  • 10de Villiers E, Jackson A, Campos F. Aerodynamic simulations using vertically integrated open source solutions[C]//Proceedings of 7th MIRA International Vehicle Aerodynamics Conference. Coventry, UK: Mira Ltd, 2008: 378-388.

二级参考文献60

共引文献148

同被引文献168

引证文献14

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部