期刊文献+

主动形体模型法在肝脏CT图像分割中的应用 被引量:7

Application of active shape model in segmentation of liver CT image
在线阅读 下载PDF
导出
摘要 主动形体模型(ASM模型)具有较强的针对柔性体建模的能力,在医学图像处理领域具有广泛的应用.与主动轮廓模型(Snake)相比,ASM模型运用了训练集的统计形状信息来进行分割,避免了训练集大量先验信息的浪费.首次将主动形体模型运用在真实的肝脏CT图像的分割中,建立起一个肝脏统计形体模型并运用在肝脏CT的分割中.实验中将ASM模型和Snake模型的分割结果进行比较,结果表明:运用主动形体模型进行肝脏CT图像的分割可以取到更好的匹配效果,并能大大缩短目标定位的时间. Active Shape Model(ASM) has strong modeling capability for flexible objects and it has a wild range of applications in the field of medical image processing. Comparing with the Active Contour Model (Snake), ASM model used the statistics shape information in training set for image segmentation. It will avoid wasting a lot of prior information of training set. We firstly applied Active Shape Model in the segmentation of the real liver CT images. We established a liver statistical shape model and applied it in the segmentation of liver CT images. In the experiment, the segmentation results of ASM model and Snake model are compared. The result shows that using Actiye Shape Model for the segmentation of liver CT images can gain a better match result, and the time of targeting will be shorten greatly.
出处 《浙江工业大学学报》 CAS 2012年第4期450-453,共4页 Journal of Zhejiang University of Technology
关键词 肝脏CT图像 主动形体模型 主动轮廓模型 liver CT image active shape model active contour model
  • 相关文献

参考文献6

  • 1KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988,1 (4):321-331.
  • 2COOTES T F, TAYLOR C J. Active shape models-' smart snakes' [C]//British Machine Vision Conference. London: Manchester University, 1992:266-275.
  • 3COOTES T F, EDWARDS G, TAYLOR C J. Comparing ac- tive shape models with active appearance model[C]//British Machine Vision Conference. London: Manchester University, 1999:173-181.
  • 4董硕,罗述谦.活动形状模型在医学图像分割中的应用[J].国际生物医学工程杂志,2007,30(3):150-154. 被引量:2
  • 5WAN K W, LAM K M, NG K D. An accurate active shape model for facial feature extraction[J]. Pattern Recognition Letters, 2005,26 (15) : 2409-2423.
  • 6蔡宇新,徐涛.基于ASM的图像中二维物体的定位方法研究[J].计算机应用,2003,23(z1):191-194. 被引量:13

二级参考文献37

共引文献13

同被引文献85

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部