期刊文献+

微粒群优化算法在流水线干扰管理调度中的应用 被引量:5

Research on the Disruption Management for Flow-shop Scheduling Problem Based on Particle Swarm Optimization
原文传递
导出
摘要 微粒群优化算法(Particle Swarm Optimization,PSO)是起源于鸟群和鱼群群体运动行为的研究,是在蚁群算法提出之后的又一种新的进化计算技术,具有典型的群体智能特性。本文构建了干扰为工件到达的流水车间调度干扰管理模型,其经典目标函数为最大完工时间和干扰目标函数为干扰时间差相混合。本文运用微粒群优化算法求解流水线干扰管理调度问题,给出了计算实例并进行了详细分析,并对干扰管理问题和重调度问题进行了测试分析,得出了有参考意义的结果。 Particle swarm optimization(PSO) with the typical characteristic of swarm intelligence is a kind of novel evolution algorithm after ant colony algorithm,it inspired by social behavior of bird flocking or fish schooling.In addition,computation model is set up for disruption management on the flow shop scheduling with the arrival of new job,whose objective function is mix makespan with the time difference.Particle swarms optimization algorithm is adopted to test the disruption management scheduling problems for flow shop and a detailed analysis is given.The disruption management and re-scheduling issues are also tested and analyzed.The results of the reference is obtained.
出处 《工业工程与管理》 CSSCI 北大核心 2012年第4期48-53,共6页 Industrial Engineering and Management
基金 国家自然科学基金资助项目(71271138) 教育部人文社会科学规划基金项目(10YJA630187) 上海市教育委员会科研创新项目(12ZS133) 高等学校博士点基金项目(20093120110008)
关键词 微粒群算法 流水线 干扰管理 调度问题 优化 particle swarm optimization algorithm; flow-shop; disruption management; scheduling problem; optimization
  • 相关文献

参考文献8

  • 1何祯,崔克呐,李崇斌.流水车间作业计划排序问题的模型分析及启发式算法[C].中国机械工程学会第二次工业工程学术会议论文集,1991.
  • 2Palmer D. Sequencing jobs through a multistage process in the minimum total time~A quick method of obtaining a near optimum[J]. Operational Society (Quarterly), 19 6 5.
  • 3Pirlot M. General local search heuristics in combmational optimization: atutor belgian journal of operational research[J]. Statistics and ComPuter Science, 1992,32 : 7-67.
  • 4Swarm Intelligence and its plications http://goanna, cs. rmit. edu. au/ xiaodong/cecO3-session/cec _ 2003 _ special _ session, pdf.
  • 5XieXiaofeng, Zhang Wenjun, Yang Zhilian. Incorporating knowledge in genetic algorithms for device synthesis[C]. 6th Int Conf on Solid-state and Integrated Circuit Technology. Shanghai, 2001 : 11432-1146.
  • 6Shi Yuhui, Eberhart R. Parameter selection in particleswarm opt imization[C]. Proc of the 7th Annual Conf on Evolutionary Programming. Washington DC, 1998. 591-600.
  • 7Yo shida H,Kawata K, Fukuyama Y, et al. A particle swarm optimizat ion for reactive power and voltage control considering voltage security assessment [J ]. Trans of the Institute of Electrical Engineers of Japan, 1999,119-B (12) : 1462-1469.
  • 8YU Gang, QI Xiangtong. Disruption Management.- Framework, Models and Applications [ M]. Singapore: World Scientific Publishing Co. Pte. Ltd, 2004.

共引文献1

同被引文献69

  • 1庞新富,俞胜平,张志宇,郑秉霖,柴天佑.炼钢-连铸生产优化重调度方法[J].系统工程学报,2010,25(1):98-103. 被引量:27
  • 2WANG Bing,XI Yu-Geng.Rolling Partial Rescheduling with Dual Objectives for Single Machine Subject to Disruptions[J].自动化学报,2006,32(5):667-673. 被引量:3
  • 3李莉,乔非,许潇红,吴启迪.半导体生产线全局修正式重调度方法研究[J].计算机集成制造系统,2006,12(7):1022-1027. 被引量:4
  • 4乔非,李莉,王遵彤,过纯中.面向半导体生产的改进的混合重调度策略研究[J].计算机集成制造系统,2007,13(3):558-562. 被引量:4
  • 5Rock H. The three-machine no-wait flowshop problem is NP-complete[ J]. Journal of the Association for Compu- ting Machinery, 1984, 31(2): 336-345.
  • 6Bassem Jarboui, Saber Ibrahim, Patrick Siarry, Abdelwa- heb Rebai. A combinatorial particle swarm optimisation for solving permutation flowshop problems[J ]. Computers & Industrial Engineering, 2008, 54: 526-538.
  • 7Hall N G, Sriskandarajah C. A survey of machine sched- uling problems with blocking and no-wait in process [ J ]. Operations research, 1996, 44(3) : 510-525.
  • 8Goyal S K, Sriskandarajah C. No-wait shop scheduling: computational complexity and approximate algorithms [ J] . Operations research, 1988, 25 : 220-244.
  • 9Van Deman J M, Baker K R. Minimisation mean flow time in flowshop with no intermediate queues [ J ]. AIIE Trans, 1974, 6: 28-34.
  • 10Tang L X, Luh P B, Liu J Y. Steel-making processscheduling using Lagrangian relaxation [J].International Journal of Production Research, 2002, 40( 1 ) : 55-70.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部