期刊文献+

Unifying representation of Bézier curve and two kinds of generalized ball curves 被引量:4

Unifying representation of Bézier curve and two kinds of generalized ball curves
在线阅读 下载PDF
导出
摘要 This paper presents a new basis, the WSB basis, which unifies the Bemstein basis, Wang-Ball basis and Said-Ball basis, and therefore the Bézier curve, Wang-Ball curve and Said-Ball curve are the special cases of the WSB curve based on the WSB basis In addition, the relative degree elevation formula, recursive algorithm and conversion formula between the WSB basis and the Bern- stein basis are given. This paper presents a new basis, the WSB basis, which unifies the Bemstein basis, Wang-Ball basis and Said-Ball basis, and therefore the Bézier curve, Wang-Ball curve and Said-Ball curve are the special cases of the WSB curve based on the WSB basis In addition, the relative degree elevation formula, recursive algorithm and conversion formula between the WSB basis and the Bern- stein basis are given.
出处 《Computer Aided Drafting,Design and Manufacturing》 2012年第2期32-38,共7页 计算机辅助绘图设计与制造(英文版)
基金 Supported by the Key Project of Chinese Ministry of Education(No.309017) the National Natural Science Foundation of China(No.60473114) the Anhui Provincial Natural Science Foundation(No.07041627)
关键词 BASIS WSB curve Wang-Ball curve Bézier curve degree elevation formula recursive algorithm basis WSB curve Wang-Ball curve Bézier curve degree elevation formula recursive algorithm
  • 相关文献

参考文献5

二级参考文献42

  • 1沈莞蔷,汪国昭.Ball基的推广[J].软件学报,2005,16(11):1992-1999. 被引量:17
  • 2吴晓勤.带形状参数的Bézier曲线[J].中国图象图形学报,2006,11(2):269-274. 被引量:58
  • 3刘松涛,刘根洪.广义Ball样条曲线及三角域上曲面的升阶公式和转换算法[J].应用数学学报,1996,19(2):243-253. 被引量:12
  • 4吴晓勤,韩旭里,罗善明.四次Bézier曲线的两种不同扩展[J].工程图学学报,2006,27(5):59-64. 被引量:38
  • 5王国瑾.高次Ball曲线及其几何性质[J].高校应用数学学报,1987,2(1):126-140.
  • 6Ball A A. CONSURF Part 1: Introduction of the Conic Lofting Title. Computer Aided Design, 1974,6(4): 243-349.
  • 7Ball A A. CONSURF Part 2: Description of the Algorithms. Computer Aided Design, 1975, 7(4): 237-242.
  • 8Said H B. A Generalized Ball Curve and its Recursive Algorithm. ACM Transactions on Graphics, 1989, 4(8): 360-378.
  • 9Hu S M, Wang G Z, Jin T G. Properties of Two Types of Generalized Ball Curves. Computer Aided Design, 1996, 28(2): 125-133.
  • 10Delgado J, Pefia J M. On the Generalized Ball Bases. Advances in Computational Mathematics, 2006, 24(1): 263-280.

共引文献39

同被引文献35

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部